Гидравлическое сопротивление при ламинарном движении. Коэффициент гидравлического сопротивления

Гидравлические потери

Гидравлические потери или гидравлическое сопротивление - безвозвратные потери удельной энергии (переход её в теплоту) на участках гидравлических систем (систем гидропривода , трубопроводах , другом гидрооборудовании), обусловленные наличием вязкого трения . Хотя потеря полной энергии - существенно положительная величина, разность полных энергий на концах участка течения может быть и отрицательной (например, при эжекционном эффекте).

Гидравлические потери принято разделять на два вида:

  • потери на трение по длине - возникают при равномерном течении, в чистом виде - в прямых трубах постоянного сечения, они пропорциональны длине трубы;
  • местные гидравлические потери - обусловлены т. н. местными гидравлическими сопротивлениями - изменениями формы и размера канала, деформирующими поток. Примером местных потерь могут служить: внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п.

Гидравлические потери выражают либо в потерях напора в линейных единицах столба среды, либо в единицах давления : , где - плотность среды, g - ускорение свободного падения .

Коэффициенты потерь

Основная статья: Формула Дарси - Вейсбаха

Во многих случаях приближённо можно считать, что потери энергии при протекании жидкости через элемент гидравлической системы пропорциональны квадрату скорости жидкости . По этой причине удобно бывает характеризовать сопротивление безразмерной величиной ζ , которая называется коэффициент потерь или коэффициент местного сопротивления и такова, что

То есть в предположении, что скорость w по всему сечению потока одинакова, ζ=Δp /e торм, где e торм = ρw ²/2 - энергия торможения единицы объёма потока относительно канала. Реально в потоке скорость жидкости не равномерна, в справочной литературе в данных формулах принимается среднерасходная скорость w =Q /F , где Q - объёмный расход, F - площадь сечения, для которого рассчитывается скорость . Таким образом, средняя энергия торможения потока обычно несколько больше ρw ²/2, см. Среднее квадратическое .

Для линейных потерь обычно пользуются коэффициентом потерь на трение по длине (также коэффициент Дарси ) λ, фигурирующего в формуле Дарси - Вейсбаха

,

где L - длина элемента, d - характерный размер сечения (для круглых труб это диаметр). Иначе в единицах давления

;

таким образом, для линейного элемента относительной длины L /d коэффициент сопротивления трения ζ тр =λL /d .

Влияние режима течения в трубах на гидравлические потери

Поскольку при турбулентном режиме течения происходит расход энергии потока на преодоление вязкости при турбулентных колебаниях, гидравлические потери при ламинарном режиме течения жидкости значительно меньше, чем при турбулентном . Так, например, если бы в системах водоснабжения и отопления при существующих скоростях движения жидкостей возможно было бы поддерживать ламинарный режим течения, то напор насосов можно было бы уменьшить в 5-10 раз. Изменение режима течения с ламинарного на турбулентный вызывает скачкообразное увеличение сопротивления (при некоторых скоростях, т.е. в некотором диапазоне чисел Рейнольдса , ламинарное течение неустойчиво, но в определённых условиях может существовать). В то же время коэффициент гидравлического сопротивления при ламинарном режиме обычно получается больше, чем при турбулентном, поскольку для ламинарных режимов характерны более низкие скорости. При ламинарном режиме сопротивление примерно линейно зависит от скорости (соответственно, коэффициент примерно линейно падает, например, в круглых трубах ). При турбулентном режиме в гидравлически гладких трубах (при небольших шероховатостях и небольших Re) зависимость имеет иной характер (для круглых труб ) и во всех практически реализуемых случаях лежит выше зависимости для ламинарного режима; при бо́льших числах Рейнольдса под влиянием шероховатости график λ претерпевает сложный изгиб, и начиная с некоторого критического значения при Re>Re кр (область автомодельности) λ зависит только от шероховатости.

Лекция 6.

Потери удельной энергии (напора) , входящие в уравнение Бернулли

,

являются следствием гидравлических сопротивлений.

Гидравлически сопротивления – силытрения, появляющиеся в жидкости приее движении и вызывающие потери напора.

Определение потерь энергии потоком является одним из важнейших вопросов почти любого гидравлического расчета. Рассматривая этот вопрос, будем иметь в виду потерю энергии потоком, находящимся в неподвижном русле (труба, канал), обусловленную работой только сил трения (внешних и внутренних), возникающих в жидкости при ее движении. Именно эту потерю удельной энергии (потерю напора) учитывает уравнение Бернулли.

Различают два вида потерь напора:

Потери напора по длине, обозначаемые ;

Местные потери напора, обозначаемые .

Потеря напора по длине – та часть энергии потока, которая расходуется на преодоление трения в прямолинейных участках русел (трубе, канале), где движение жидкости равномерное или несколько неравномерное (плавно изменяющееся). Эта энергия переходит в тепло и безвозвратно теряется потоком.

Местные потери напора – та часть энергии, которая расходуется также на преодолении трения, но в местах, где поток претерпевает резкую деформацию, в результате которой на некотором, сравнительно небольшом участке, нарушается равномерное движение жидкости.

Деформация потока (нарушение равномерного движения) имеет место при его входе в трубу, при резком расширении и сужении трубопровода, в местах, где установлены вентили, клапаны, при повороте трубы и т.п.

Потери напора по длине определяются по формуле А. Дарси – Ю. Вейсбаха:

Для круглоцилиндрических труб

Для трубопроводов любой формы поперечного сечения

. (84)

Местные потери напора определяются по формуле Ю. Вейсбаха.

При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается.
Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения) .

Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.
Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока (линейные потери напора) и обозначаются обычно h тр .

Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости.
Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы) , называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через h м .

Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:

h S = h тр + h м .

Потери напора при равномерном движении жидкости в трубах

Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.

При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S , так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:

v = Q/S = const .

Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R (прямолинейное движение) , так как в противном случае средняя скорость может изменяться по направлению.
Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α = const , где α коэффициент Кориолиса . Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.

Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2 , то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли :

z 1 + p 1 /γ = z 2 + p 2 /γ +h тр ,

где:
z 1 и z 2 – перепад высот между центрами соответствующих сечений;
p 1 и p 2 – давление жидкости в соответствующих сечениях;
γ – удельная плотность жидкости, γ = gρ ;
h тр – величина потерянной энергии (потери на трение).

Из этой формулы выразим величину потерянной энергии h тр :

h тр = (z 1 + p 1 /γ) - (z 2 + p 2 /γ) .

Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:

h тр = p 1 /γ - p 2 /γ = (p 1 – p 2)/γ .



Формула Дарси-Вейсбаха для равномерного движения жидкости в трубах

При равномерном движении жидкости в трубах потери напора на трение по длине h л определяют по формуле Дарси-Вейсбаха , которая справедлива для круглых труб, как при турбулентном, так и при ламинарном режиме. Эта формула устанавливает зависимость между потерями напора h л , диаметром трубы d и средней скоростью потока жидкости v :

h л = λ v 2 /2gd ,

где:
λ – коэффициент гидравлического трения (величина безразмерная);
g – ускорение свободного падения.

Для труб произвольного сечения в формуле Дарси-Вейсбаха используют понятие приведенного или эквивалентного диаметра сечения трубы по отношению к круглому сечению.

В некоторых случаях используют также формулу

h л = v 2 l/C 2 R ,

где:
v – средняя скорость потока в трубе или канале;
l – длина участка трубы или канала;
R – гидравлический радиус потока жидкости;
С – коэффициент Шези , связанный с коэффициентом гидравлического трения λ зависимостью: С = √(8g/λ) или λ = 8g/С 2 . Размерность коэффициента Шези – м 1/2 /с.

Для определения коэффициента гидравлического трения при различных режимах и условиях движения жидкости применяют различные способы и эмпирические зависимости, в частности, график И. И. Никурадзе , формулы П. Блазиуса , Ф. А. Шевелева (для гладких труб) и Б. Л. Шифринсона (для шероховатых труб) . Все эти способы и зависимости опираются на критерий Рейнольдса Re и учитывают состояние поверхности труб.

Потери напора из-за местных сопротивлений

Как уже указывалось выше, местные потери напора обусловлены преодолением местных сопротивлений, создаваемых фасонными частями, арматурой и прочим оборудованием трубопроводных сетей, а также изменением направления потока жидкости (изгибы труб, колена и т. п.) .
Местные сопротивления вызывают изменение величины или направления скорости движения жидкости на отдельных участках трубопровода, что связано с появлением дополнительных потерь напора.
Движение в трубопроводе при наличии местных сопротивлений является неравномерным.

Потери напора в местных сопротивлениях h м (местные потери напора) вычисляют по формуле Вейсбаха :

h м = ξ v 2 /2g ,

где:
v – средняя скорость в сечении, расположенном ниже по течению за местным сопротивлением;
ξ – безразмерный коэффициент местного сопротивления, определяемый для каждого вида местного сопротивления по справочным таблицам или установленным зависимостям.

Потери напора при внезапном расширении трубопровода находят по формуле Борда :

h вн.р. = (v 1 – v 2) 2 \2g = ξ вн.р.1 v 1 2 /2g = ξ вн.р.2 v 2 2 /2g ,

где v 1 и v 2 – средние скорости течения до и после расширения.

При внезапном сужении трубопровода коэффициент местного сопротивления определяется по формуле:

h вн.с. = (1/ε - 1) 2 ,

где ε - коэффициент сжатия струи, определяемый, как отношение площади сечения сжатой струи в узком трубопроводе к площади сечения узкой трубы. Этот коэффициент зависит от степени сжатия потока n = S 2 /S 1 и может быть найден по формуле А. Д. Альтшуля : ε = 0,57 + 0,043/(1,1 - n) .
Значение коэффициента ε при расчетах трубопроводов берут из справочных таблиц.

При резком повороте трубы круглого поперечного сечения на угол α коэффициент сопротивления можно найти по формуле:

ξ α = ξ 90˚ (1 – cos α) ,

где:
ξ 90˚ - значение коэффициента сопротивления для угла 90˚, которое для точных расчетов принимается по справочным таблицам, а для приближенных расчетов принимается равным ξ 90˚ = 1.

Аналогичными методами осуществляют подбор или расчет коэффициентов сопротивления для других видов местных сопротивлений – резкое или постепенное сужение (расширение) трубопровода, повороты, входы и выходы из трубы, диафрагмы, запорные устройства, сварочные швы и т. п.

Приведенные выше формулы применимы для турбулентного режима движения жидкостей с большими числами Рейнольдса , когда влияние вязкости жидкости незначительно.
При движении жидкости с малыми числами Рейнольдса (ламинарный режим) величина местных сопротивлений мало зависит от геометрических характеристик сопротивления и скорости потока, на их величину большее влияние оказывает величина числа Рейнольдса.
В таких случаях для расчета коэффициентов местных сопротивлений применима формула А. Д. Альтшуля :

ξ = А/Re + ξ экв ,

где:
А – нестесненное сечение трубопровода;
ξ экв – значения коэффициента местного сопротивления в квадратичной области;
Re - число Рейнольдса.

Значения параметра А и некоторых местных сопротивлений приводятся в справочных таблицах и используются при практических расчетах трубопроводов, предназначенных для движения жидкостей в ламинарном режиме.



Общие сведения о гидравлических потерях

Движение вязкой жидкости сопровождается потерями энергии.

Потери удельной энергии (напора), или гидравлические потери, зависят от формы, размеров русла, скорости течения и вязкости жидкости.

В большинстве случаев гидравлические потери пропорциональны скорости течения жидкости во второй степени или динамическому напору и определяются из выражения

где - коэффициент потерь; V- средняя скорость в сечении.

Потери в единицах давления

. (4.2)

Гидравлические потери энергии обычно разделяют на местные потери и потери на трение по длине

Местные потери энергии обусловлены так называемыми местными гидравлическими сопротивлениями, т.е. местными изменениями формы и размеров русла, вызывающими деформацию потока. При протекании жидкости через местные сопротивления изменяется ее скорость и возникают вихри.

Примером местных сопротивлений может служить задвижка (рис.4.1).

Местные потери напора определяются по формуле Вейсбаха

где V-средняя скорость в трубе; -коэффициент местного сопротивления.

Потери на трение по длине - это потери энергии, которые возникают в прямых трубах постоянного сечения и возрастают прямо пропорционально длине трубы (рис.4.2).

Рассматриваемые потери обусловлены внутренним трением жидкости в трубах. Потери напора при трении определяются по формуле Дарси-Вейсбаха

где λ – коэффициент гидравлического трения по длине или коэффициент Дарси; l – длина трубопровода; d –его диаметр; V – средняя скорость течения жидкости.

Для ламинарного режима движения жидкости в круглой трубе коэффициент определяется по теоретической формуле

где число Рейнольдса.

При турбулентном режиме коэффициент зависит от числа Рейнольдса Re и относительной шероховатости ( -эквивалентная шероховатость) и определяется по эмпирическим формулам.

В области гидравлически гладких труб 4000т.е. прималых скоростях и числах Рейнольдса, коэффициент Дарси зависит только от числа Рейнольдса, и его определяют по формуле Блазиуса

. (4.7)

В переходной области () на коэффициент Дарси влияют шереховатость и число Рейнольдса. В этой области для вычислений используют формулу Альтшуля

. (4.8)

В квадратичной области сопротивления (области гидравлически шероховатых труб) коэффициент может быть найден по формуле Шифринсона

. (4.9)

Местные сопротивления

В местных гидравлических сопротивлениях, вследствие изменения конфигурации потока на коротких участках, изменяются скорости движения жидкости по величине и направлению, а также образуются вихри. Это и есть причиной местных потерь напора. Местными сопротивлениями являются расширения и сужения русла, поворот, диафрагма, вентиль, кран и т.п. (рис.4.3).

Тема: Потери напора. Гидравлические сопротивления

Лекция 6

6.1. Сопротивление потоку жидкости

Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жид­кости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большин­ства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда:

Естественно, что твёрдые стенки препятствуют свободному движению жидкости. Поэтому при относительном движении жидкости и твердых поверхностей неизбежно возникают (развиваются) гидравлические сопротивления . На преодоление возникающих сопротивлений затрачивается часть энергии потока. Эту потерянную энергию называют гидравлическими потерями удельной энергии или потерями напора. Гидравлические потери главным образом связаны с преодолением сил трения в потоке и о твёрдые стенки и зависят от ряда факторов, основными из которых являются:

    геометрическая форма потока,

    размеры потока,

    шероховатость твёрдых стенок потока,

    скорость течения жидкости,

    режим движения жидкости (который связан со скоростью, но учитывает её не только количественно, но и качественно),

    вязкость жидкости,

    некоторые другие эксплуатационные свойства жидкости.

Но гидравлические потери практически не зависят от давления в жидкости.

Если учесть, что труба в обоих сечениях 1 и 2 имеет одинаковые площади поперечных сечений, жидкость является несжимаемой и выполняется условие сплошности (неразрывности) потока, то, несмотря на гидравлические сопротивления и потери напора, кинетическая энергия в обоих сечениях будет одинаковой. Учтя это, а также то, что при больших давлениях в напорных потоках и небольшой (практически нулевой) разнице нивелирных высот Z 1 и Z 2 , потери удельной энергии можно представить в виде

.

Опыты показывают, что во многих (но не во всех) случаях потери энергии прямо пропорциональны квадрату скорости течения жидкости, поэтому в гидравлике принято выражать потерянную энергию в долях от кинетической энергии, отнесённой к единице веса жидкости

,

где - коэффициент сопротивления .

Таким образом, коэффициент сопротивления можно определить как отношение потерянного напора к скоростному напору.

Гидравлические потери в потоке жидкости разделяют на 2 вида:

    потери по длине,

    местные потери.

6.2. Потери напора на местных гидравлических сопротивлениях

Местными гидравлическими сопротивлениями называются любые участки гидравлической системы, где имеются повороты, преграды на пути потока рабочей жидкости, расширения или сужения, вызывающие внезапное изменение формы потока, скорости или направления ее движения. В этих местах интенсивно теряется напор. Примерами местных сопротивлений могут быть искривления оси трубопровода, изменения проходных сечений любых гидравлических аппаратов, стыки трубопроводов и т.п.

Несмотря на многообразие видов местных гидравлических сопротивлений, их всё же можно при желании сгруппировать:

потери напора в руслах при изменении размеров живого сечения, потери напора на местных гидравлических сопротивлениях, связанных с из­менением направления движения жидкости, потери напора при обтекании преград.

Внезапное расширение русла. Внезапное расширение русла чаще всего наблюдается

Таким образом, можно сказать, что потеря напора при внезапном расширении потока равна скоростному напору, соответствующему потерянной скорости.

П

лавное расширение русла (диффузор).
Плавное расширение русла называется диф­фузором. Течение жидкости в диффузоре имеет сложный характер. Поскольку живое сечение потока постепенно увеличивается, то, со­ответственно, снижается скорость движения жидкости и увеличивается давление.

Внезапное сужение канала. При внезапном сужении канала поток жидкости отрыва­ется от стенок входного участка и лишь затем (в сечении 2 - 2)касается стенок канала

м

еньшего размера. В этой области потока образуются две зоны интенсивного вихреобразования (как в широком участке тру­бы, так и в узком), в результате чего, как и в предыдущем случае, потери напора складываются из двух составляющих (потерь на трение и при сужении). Коэффициент

потерь напора при гидравлическом сопротивлении внезапного сужения потока можно оп­ределить по эмпирической зависимости, предложенной И.Е. Идельчиком:

или взять по таблице:

Плавное сужение канала. Плавное сужение канала достигается с помощью кониче­ского участка называемого конфузором. Потери напора в конфузоре образуются практически за счёт трения, т.к. вихреобразование в конфузоре практически отсутствует. Коэф­фициент потерь напора в конфузоре можно определить по формуле:

При большом угле конусности а >50° коэффициент потерь напора можно определять по формуле с внесением поправочного коэффициента.

Нормальный вход в трубу. Из резервуаров, где хранятся жидкости вход в выкидной трубопровод осу­ществляется в так называемом нормальном исполне­нии, т.е. когда осевая линия патрубка трубопровода располагается по нормали к боковой стенку резервуара. Этот вид гидравлических сопротивлений также можно отнести к сопротивлениям связанным с изменением размеров русла, просто здесь размеры нового русла бесконечно малы по сравнению с размерами исходного русла с сечением резервуара. В этом случае внутри вы­кидного патрубка вытекающая из резервуара жидкость за­полняет всё сечение трубы не сразу, а лишь на некотором расстоянии от входа. В этой области в застойной зоне часть жидкости совершает вращательное движение и соз­данный таким образом вихрь порождает дополнительные г

гидравлические сопротивления. Коэффициент потерь на­пора при этом приблизительно составляет половину ско­ростного напора:

Выход из трубы в покоящуюся жидкость. Это обычный эле­мент стыковки напорной части трубопровода с резервуаром. Вход­ной патрубок трубопровода располагается нормально к боковой стенке резервуара. Этот вид гидравлических сопротивлений также можно рассматривать как разновидность внезапного расширения потока жидкости до бесконечно большого сечения. Величина коэффициента потерь напора, в большинстве случаев, принимается равной одному скоростному напору.

Внезапный поворот канала. Под таким гидравличе­ским сопротивлением будем понимать место соединения трубопроводов одинакового диаметра, при котором осевые линии трубопроводов не совпадают, т.е. составляют между собой некоторый угол а Этот угол называется углом поворота русла, т.к. здесь изменяет­ся направление движения жидкости. Физические основы процесса преобразования кине­тической энергии при повороте потока достаточно сложны и следует рассмотреть лишь результат этих процессов. Так при прохождении участка внезапного поворота образуется сложная форма потока с двумя зонами вихревого движения жидкости. На практике такие элементы соединения трубопроводов называют коленами. Следует отметить, что колено как соединительный элемент является крайне нежелательным ввиду значительных потерь напора в данном виде соединения

Плавный поворот канала. Этот вид гидравлических сопротивлений можно считать более благоприятным (экономичным) с точки зрения величины потерь напора, т.к. в дан­ном случае опасных зон для образования интенсивного вихревого движения жидкости практически нет. Тем не менее, под действием того, что при повороте потока возникают центробежные силы, способствующие отрыву частиц жидкости от стенки трубы, вихре­вые зоны всё же возникают. Кроме того, при этом возникают встречные потоки жидкости направленные от внутренней стенки трубы к внешней стенке трубы.

Задвижки. Задвижки часто используют как средст­во регулирования характеристик потока жидкости (рас­ход, напор, скорость). При наличии задвижки в трубо­проводе поток обтекает находящиеся в трубе плашки задвижки, наличие которых ограничивает живое сечение потока, а также приводит к возникновению вихревых потоков жидкости около плашек задвижки. Коэффициент потерь напора зависит от степени закрытия задвижки

Краны. Краны также могут использоваться в качестве средств регулирования пара­метров потока. В этих случаях коэффициент потерь напора зависит от степени закрытия крана (угла поворота).

Обратные клапаны и фильтры. Коэффициенты потерь напора определяются, как пра­вило, экспериментально.

6.3. Гидравлические потери по длине

Потери напора по длине, иначе их называют потерями напора на трение , в чистом виде, т.е. так, что нет никаких других потерь, возникают в гладких прямых трубах с постоянным сечением при равномерном течении. Такие потери обусловлены внутренним трением в жидкости и поэтому происходят и в шероховатых трубах, и в гладких. Величина этих потерь выражается зависимостью

,

где - коэффициент сопротивления, обусловленный трением по длине.

При равномерном движении жидкости на участке трубопровода постоянного диаметра d длиной l этот коэффициент сопротивления прямо пропорционален длине и обратно пропорционален диаметру трубы

где коэффициент гидравлического трения ( иначе его называют коэффициент потерь на трение или коэффициент сопротивления трения).

Из этого выражения нетрудно видеть, что значение - коэффициент трения участка круглой трубы, длина которого равна её диаметру.

С учетом последнего выражения для коэффициента сопротивления потери напора по длине выражаются формулой Дарси

.

Эту формулу можно применять не только для цилиндрических трубопроводов, но тогда надо выразить диаметр трубопровода d через гидравлический радиус потока

где, напомним, ω – площадь живого сечения потока,

χ - смоченный периметр.

Гидравлический радиус можно вычислить для потока с любой формой сечения, и тогда формула Дарси принимает вид

.

Эта формула справедлива как для ламинарного, так и для турбулентного режимов движения жидкости, однако коэффициент трения по длине λ не является величиной постоянной.

Запишем формулу Дарси-Вейсбаха в виде:

Величину называют гидравлическим уклоном, а величинуназывают коэффициентом Шези.

Величина имеет размерность скорости и носит название динамической

скорости жидкости.

Тогда коэффициент трения (коэффициент Дарси):

Потери напора на трение в турбулентном потоке жидкости. При исследовании во­проса об определении коэффициента потерь напора на трение в гидравлически гладких трубах можно прийти к мнению, что этот коэффициент целиком зависит от числа Рей-нольдса. Известны эмпирические формулы для определения коэффициента трения, наибо­лее широкое распространение получила формула Блазиуса:

По данным многочисленных экспериментов формула Блазиуса подтверждается в пределах значений числа Рейнольдса отдо 1-10 5 . Другой распространённой эмпири­ческой формулой для определения коэффициента Дарси является формула П.К. Конакова:

Формула П.К. Конакова имеет более широкий диапазон применения до значений числа Рейнольдса в несколько миллионов. Почти совпадающие значения по точности и области применения имеет формула Г.К. Филоненко:

Изучение движения жидкости по шероховатым трубам в области, где потери напора определяются только шероховатостью стенок труб, и не зависят от скорости движения жидкости, т.е. от числа Рейнольдса осуществлялось Прандтлем и Никурадзе. В результате их экспериментов на моделях с искусственной шероховатостью была установлена зависимость для коэффициента Дарси для этой так называемой квадратичной облас­ти течения жидкости:

Для труб с естественной шероховатостью справедлива формула Шифринсона

где: - эквивалентная величина выступов шероховатости. Ещё более сложная обстановка связана с изучением движения жидкости в переход­ной области течения, когда величина потерь напора зависит от обоих факторов,

Наиболее приемлемых результатов добились Кёллебрук - Уайт:

Несколько отличная формула получена Н.З. Френкелем:

Формула Френкеля хорошо согласуется с результатами экспериментов других авто­ров с отклонением (в пределах 2 - 3%). Позднее А.Д. Альтшуль получил простую и удоб­ную для расчётов формулу:

Обобщающие работы, направленные на унификацию результатов экспериментов, проведенных разными авторами, ставили перед собой цель связать воедино исследования потоков жидкости в самых разнообразных условиях.

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные