Расчет гидравлический режим системы отопления эксель. Гидравлический расчет системы водяного отопления

Самый быстрый и простой способ сделать гидравлический расчет системы отопления – это онлайн калькулятор. Не имея узкопрофильного образования, даже не стоит пытаться выполнить расчет в таблице Excel. Покупать специальную программу за большие деньги, естественно, тоже бессмысленно. Совет таков: если хотите избежать проблем, то сразу обратитесь к хорошему специалисту, которых на самом деле не так уж и много, так что будьте внимательны.

Что такое гидравлический расчет

Гидравлический расчет делают только для крупных контуров обогрева.

Принцип работы водяной системы отопления заключается в том, что по трубам и батареям циркулирует теплоноситель. Это жидкость (вода или ) которая нагревается в котле и потом прогоняется по всему контуру циркуляционным насосом или благодаря силе гравитации.

Теплоноситель во время циркуляции встречает гидравлическое сопротивление. Кроме этого, жидкость немного останавливается из-за трения об стенки труб. Гидравлический расчет систем отопления выполняется для того, чтобы вычислить оптимальное значение сопротивления контура, при котором скорость теплоносителя будет в пределах нормы (2-3 м/с для герметичного контура). По заключению вычислений мы узнаем следующие ключевые параметры:

  • для контура;
  • мощность циркуляционного насоса;
  • количество оборотов для регулировки на каждом радиаторе.

Независимо от того где выполнялся гидравлический расчет системы отопления, на онлайн калькуляторе или в Excel, его пользу сложно переоценить. Так как одним выстрелом мы убиваем двух зайцев: контур работает, как часы и нет перерасхода средств, ведь мы точно будем знать оптимальные параметры элементов системы.

Гидравлический расчет нужно делать только для больших систем отопления, которые обогревают дома с площадью от 200 м. кв. Для маленьких контуров это необязательно.

Специалисты делают гидравлический расчет системы отопления в Excel таблице. Это очень сложный процесс, который под силу далеко не всем людям с профильным образованием, не говоря уже о дилетантах. Нужно разбираться в теплотехнике, гидравлике, знать основы монтажа и многое другое. Получить эти знания можно только в высшем учебном заведении. Есть специализированные программы для гидравлического расчета системы отопления. Но опять же работать с ними могут только люди, имеющие профильное образование.

Зачем нужна аксонометрическая схема

Аксонометрическая схема – это трехмерный чертеж системы отопления. Сделать гидравлический расчет отопления без нее просто нереально. В чертеже указывается:

  • разводка труб;
  • места уменьшения диаметра труб;
  • размещение теплообменников и другого оборудования;
  • места установки трубопроводной арматуры;
  • объем батарей.

От размера батарей зависит их тепловая мощность, которой должно хватить на обогрев каждого помещения. Чтобы подобрать радиаторы нужно знать теплопотери. Чем они больше, тем мощнее нужны теплообменники. Аксонометрия выполняется с соблюдением масштаба.

Методы гидравлического расчета

Как мы уже сказали, гидравлический расчет можно сделать на онлайн-калькуляторе, при помощи специальной программы или же в таблице Excel. Первый вариант подойдет даже для тех, кто ничего не понимает в теплотехнике и гидравлике. Естественно, что таким методом можно получить только приблизительные значения, использовать которые в больших и сложных проектах нельзя.


Пример аксонометрической схемы.

Программное обеспечение стоит очень дорого и покупать его на один раз смысла нет, а вот сделать таблицу в Excel можно без вложений. Выполнить расчет, можно используя разные формулы:

  • теоретической гидравлики;
  • СНИПа 2.04.02-84.

Но также может отличаться и метод вычислений: удельных потерь давления или характеристик сопротивления. Последний не может применяться для гравитационных систем с естественной циркуляцией теплоносителя. При монтаже маленьких двухтрубных контуров обогрева с принудительной циркуляцией достаточно придерживаться нескольких простых правил. Основные магистрали делаются из полипропиленовых труб с наружным диаметром 25 мм. Отводы к радиаторам выполняется из труб 20 мм. А о том, как подобрать насос мы писали .

Пример гидравлического расчета в Excel

Сразу отметим, что ниже будет описан самый простой гидравлический расчет системы отопления. Пример расчета выполнен с использованием формул теоретической гидравлики для прямого трубопровода в горизонтальной плоскости длиною 100 м. Используется труба с наружным диаметром 108 мм, толщина стенки 4 мм.

Гидравлический расчет в Excel.

Для вычислений нам потребуются следующие исходные данные:

  • расход воды;
  • температура подачи и обратки;
  • условный проход трубы;
  • длина контура;
  • шероховатость трубы;
  • общий коэффициент сопротивления.

На примере гидравлического расчета системы отопления нам надо определить три основных критерия – это потери давления на трение (ПДТр), потери давления на местных сопротивлениях (ПДМС) и потери давления в трубопроводе (ПДТп). Все значения должны быть в Паскалях (Па). Ниже представленные формулы будут рассчитываться в кг/см. кв. Чтобы перевести кг/см. кв в Паскали умножаем на 9,18 и на 10 тыс.

Для вычисления ПДТр нам нужно характеристику гидравлического сопротивления умножить на дельту температур теплоносителя. Для расчета ПДМС нужно среднюю плотность воды умножить на ПДТр, коэффициент гидравлического трения и на 1 тыс. Затем полученное значение делим на 2, потом на 9,18 и на 10 тыс. Потери давления в трубопроводе вычисляются суммированием ПДТр и ПДТп.

Итоги

Чтобы сделать гидравлический расчет системы отопления используют программу, онлайн-калькулятор или таблицу Excel. На примере мы показали, что для человека без профильного образования сделать правильные вычисления невозможно. Поэтому лучший вариант – это заказать его у специалиста. Если дом маленьких, то расчет не нужен.

Целью гидравлического расчета является определение диаметров теплопроводов при заданной тепловой нагрузке и расчетном циркуляционном давлении, установленном для данной системы.

Метод расчета теплопроводов по удельным потерям давления заключается в раздельном определении потерь давления на трение и в местных сопротивлениях.

В курсовом проекте необходимо осуществить гидравлический расчет главного циркуляционного кольца.

До гидравлического расчета теплопроводов выполняют аксонометрическую схему системы отопления со все запорно-регулирующей арматурой. На схеме, разбитой на расчетные участки, нумеруют стояки а сами участки, а так же указывают тепловую нагрузку и длину участка. Длина берется по планам и разрезам здания. Сумма длин всех расчетных участков составляет величину расчетного циркуляционного кольца. Расчет теплопроводов по методу средних удельных потерь производят по следующей последовательности:

Значение р зависит от конструктивных особенностей системы отопления является расчетным располагаемым давлением, создаваемым за элеватором.

R ср =65%∑L,

∑L – суммарная длина расчетных участков, м.

    Определяют расход теплоносителя на расчетных участках G уч,кг/ч, принимая что Q 1 – тепловая нагрузка участка, составленная из тепловых нагрузок отопительных приборов, Вт;

    Ориентируясь на R ср и G уч, подбирают фактический диаметр участка d, фактическую величину удельной потери давления на трение R, скорость движения воды W.

    Определяют потери давления на трение на каждом участке RL,Па.

    Находят потери давления в местных сопротивлениях Z=p d ∑ζ на участке, зная скорость воды W и сумму коэффициентов местных сопротивлений ∑ζ. Значение динамического давления p d определяются по приложению.

Местное сопротивление тройников и крестовин относят к расчетным участкам с меньшим расходом воды; местное сопротивление отопительных приборов учитывается поровну в каждом примыкающем к ним трубопроводе.

    Определяют общие потери давления на каждом участке при выбранных диаметрах, Па:

Уч =R· l уч +Z,

    Сумма потерь давления расчетном кольце, Па:

К =∑(R· l i +Z i),

К =(0,9-0,95) р,

Если условие не выполняется, следует изменить диаметры трубопроводов на участках, на которых фактические удельные потери давления на трение намного завышены относительно средних R ср. Изменив диаметры, делается пересчет участков до выполнения условия.

Таблица №4. Гидравлический расчет системы отопления.

Номер участка

R×l уч, Па

Сумма потерь давления в расчетном кольце равна:

К =∑(R· l i +Z i)=11843,01 Па.

Значение к должно быть в пределах(0,9-0,95) р,т.е.,

Сегодняшняя тема – система водяного отопления и основополагающие принципы ее расчета. Тема фундаментальная. Ознакомившись с материалом, вы получите ключ к пониманию как выполнять расчет водяного отопления любого объекта! Прочитайте очень внимательно...

Всю статью! Я попытался разложить весь материал на элементарные для простоты восприятия «ступени». Делая шаг за шагом по «ступеням» этой своеобразной «лестницы познания», вы сможете легко достичь «вершины»!

Информация, изложенная в этой статье, не является «открытием Америки». Если вам доступно рассказали об этом когда-то преподаватели, или вы прочитали по этой тематике хорошую книгу – и все поняли, то вам, несомненно, повезло. Так случилось, что мне пришлось доходить до понимания этих, в общем-то, элементарных моментов теплотехники через значительное количество книг с иногда противоречивой и запутанной информацией. В большей степени знания пришли через практические опыты на проектируемых и действующих системах отопления завода металлоконструкций, мебельной фабрики, встроенного магазина, двух больших торговых комплексов и десятка более мелких объектов.

Укрупненный расчет в Excel системы водяного отопления.

Рассмотрим принцип действия и расчет водяного отопления на достаточно абстрактном и простом примере. Идеализированные примеры позволяют, не отвлекаясь на рутинные громоздкие, но, по сути, элементарные вычисления, сосредоточить все внимание на главных принципиально важных вещах.

Есть в русском языке заимствованное из английского языка слово «бокс», которое очень хорошо подходит в нашем случае для названия широкого круга объектов. Итак, будем отапливать бокс!

Условия задачи:

Герметичный бокс (коробка, ящик, вагончик, гараж, помещение, здание, корпус, …) в виде параллелепипеда длиной l , шириной b и высотой h заполнен воздухом, температура которого t вр /внутренняя расчетная температура/. Стенки бокса имеют толщину δ и все сделаны из одного материала, имеющего коэффициент теплопроводности λ .

Со всех шести сторон бокс окружает воздушная среда с температурой t н /наружная температура/.

Слово «среда» в данном случае имеет следующий смысл: масса воздуха в боксе и размеры бокса настолько малы по сравнению с массой и размерами окружающей воздушной среды, что любые изменения внутренней температуры воздуха t в никак не могут повлиять на изменение температуры воздуха снаружиt н .

Внутрь бокса заведены две трубы, к которым подключен установленный внутри прибор отопления (радиатор, конвектор, регистр). По одной из труб в прибор отопления подается от котла — источника теплоснабжения — горячая вода с температурой t п /температура подачи/. По второй трубе вода, отдавшая часть тепла и остывшая до температуры t о /температура обратки/, возвращается в котел. Расход воды при этом постоянен и равен /расчетный расход теплоносителя/ .

Рассматривать источник теплоснабжения и подводящие теплотрассы мы в этой задаче не будем, а примем, что на входе в бокс всегда тепловой энергии в избытке и мы можем брать ровно столько, сколько необходимо, например, при помощи автоматизированного узла подачи и учета тепловой энергии.

Дополнительно известны коэффициенты теплообмена на внутренних и наружных поверхностях ограждений α1 иα2 .

Задан и показатель нелинейности теплоотдачи приборов системы отопления n .

Схема задачи изображена на рисунке, расположенном ниже этого текста. Передняя стенка бокса условно не показана. Габаритные размеры бокса отличаются от расчетных на величину толщины стенок δ . То есть, расчетные плоскости находятся посередине толщины ограждений!



Требуется:

1. Найти расчетные теплопотери бокса и соответствующую им расчетную мощность системы водяного отопления N р .

2. При заданных расчетных температурах теплоносителяt пр иt ор определить его расчетный расход через системуG р .

3. Рассчитать теплопотери бокса и соответствующую им мощность водяной системы отопления N для температур наружного воздухаt н , отличных от расчетной температурыt нр .

4. Рассчитать температуры теплоносителя – воды – на подаче t п и в обратке t о , которые обеспечат поддержание внутри бокса неизменной расчетной температуры воздуха t вр , при неизменном расчетном расходе G р для различных температур наружного воздуха t н .

Расчет будем выполнять в программе MS Excel или в программе OOo Calc.

С общими правилами форматирования — использования различных цветов для заливки ячеек и окраски шрифтов — таблиц MS Excel и OOo Calc , которые применяются мной во всех файлах с программами, можно ознакомиться на странице « ».

Исходные данные:

1. Длину бокса l (м) заносим

в ячейку D3: 10,000

2. Ширину бокса b (м) записываем

в ячейку D4: 5,000

3. Высоту бокса h (м) вводим

в ячейку D5: 3,000

4. Толщину стенок бокса δ (м) вписываем

в ячейку D6: 0,250

При разности температур воздуха внутри бокса и снаружи начинается теплообмен, который включает в себя три этапа: передачу тепла от внутреннего воздуха внутренней стенке ограждения (характеризуется коэффициентом α1 ), передачу тепла через материал стенки (характеризуется коэффициентом λ ) и передачу тепла наружному воздуху от внешней стенки ограждения (характеризуется коэффициентом α2 ).

5. Коэффициент теплообмена на внутренней поверхности ограждения α 1 (Вт/(м2*˚С)) заносим

в ячейку D7: 8,700

6. Коэффициент теплопроводности материала ограждения (древесина – сосна) λ (Вт/(м*˚С)) заносим

в ячейку D8: 0,140

7. Коэффициент теплообмена на внешней поверхности ограждения α 2 (Вт/(м2*˚С)) заносим

в ячейку D9: 23,000

Термин «расчетная» температура внутреннего или наружного воздуха не означает, что их нужно рассчитывать. Он означает, что эти температуры задаются для расчетов, являются исходными данными для последующих расчетов!

8. Итак, мы хотим поддерживать внутри бокса неизменную температуру воздуха t вр (˚С). Записываем

в ячейку D10: 20,0

9. Расчетную температуру наружного воздуха (в данном примере — для г. Омска) t нр (˚С) вписываем

в ячейку D11: -37,0

Зная характеристики теплоисточника, записываем расчетные параметры теплоносителя, которые должны быть выданы при расчетной температуре наружного воздуха!

10. Расчетную температуру воды на подаче t пр (˚С) вводим

в ячейку D12: 90,0

11. Расчетную температуру воды на обратке t ор (˚С) вводим

в ячейку D13: 70,0

Различные приборы, применяемые для систем отопления, – батареи, радиаторы, регистры, конвекторы – имеют различную теплоотдачу при разных схемах подключения и разных температурных режимах. Коэффициент n характеризует нелинейность теплоотдачи каждого конкретного типа прибора и определяется заводом-изготовителем. Чем больше коэффициент n , тем быстрее уменьшается теплоотдача прибора при низкотемпературных режимах и быстрее увеличивается при высокотемпературных режимах отопления!

12. Показатель нелинейности теплоотдачи приборов системы отопления (усредненное значение в нашем примере) n записываем

в ячейку D14: 1,30

Результаты расчетов:

13. Общую площадь стенок ограждения A (м2) вычисляем

в ячейке D16: =2*(D3*D4+D3*D5+D4*D5) =190,000

A =2*(l * b + l * h + b * h )

14. Коэффициент теплопередачи стенки ограждения k (Вт/(м2*˚С)) рассчитываем

в ячейке D17: =1/(1/D7+D6/D8+1/D9) =0,514

k =1/(1/ α 1 + δ / λ + 1/ α 2 )

15. Расчетные теплопотери бокса N р (КВт и ГКал/час) определяем

в ячейке D18: =D16*D17*(D10-D11)/1000 =5,571

и в ячейке D19: =D18*0,85985/1000 =0,004790

N р =A *k *(t вр -t нр )

Для равновесия системы количество тепла, потерянного в окружающую среду должно быть равно количеству тепла, поступившему от источника теплоснабжения! Поэтому расчетная мощность системы отопления и расчетные потери тепла – это одна и та же величина!

16. Расчетный температурный напор θ р (˚С) считаем

в ячейке D20: =(D12-D13)/LN ((D12-D10)/(D13-D10)) =59,4

θ р =(t пр t ор )/ ln ((t пр t вр )/( t ор t вр ))

17. Расчетный расход воды через систему G р (т/час) вычисляем

в ячейке D21: =D19/(D12-D13)*1000 =0,239

G р = N р /(t пр t ор )

18. Температуру наружного воздуха t н (˚С) заносим

в ячейку I15: -40,0

19. Теплопотери бокса и мощность системы отопления N (КВт и ГКал/час) при температуре наружного воздуха t н =-40 ˚С считаем

в ячейке I16: =$D$16*$D$17*($D$10-I15)/1000 =5,864

и в ячейке I17: =I16*0,85985/1000 =0,00504

N = A * k *(t вр t н )

20. Температурный напор θ (˚С) считаем для температуры наружного воздуха t н =-40 ˚С

в ячейке I18: =$D$20*(I16/$D$18)^(1/$D$14) =61,8

θ = θ р * (N / N р )^(1/ n )

и просто пока записываем формулу

в ячейку I19: =(I20-I21)/LN ((I20-$D$10)/(I21-$D$10))

θ =(t п t о )/ ln ((t п t вр )/( t о t вр ))

В этом уравнении две неизвестные.

Первая — температура воды на подаче t п , которая при температуре наружного воздуха t н =-40 ˚Собеспечит при расчетном расходе G р =0,239 т/час расчетную температуру воздуха внутри боксаt вр =+20 ˚С.

Вторая -температура воды на обратке t о , которая в результате работы системы водяного отопления установится.

Чтобы найти эти две неизвестные, необходимо составить и решить систему из двух уравнений! Одно уравнение есть, составляем второе.

22. Температура воды на обратке t о (˚С), которая установится в результате остывания воды в системе отопления с расчетным расходомG р =0,239 т/час от пока неопределенной температуры воды на подаче t п . При этом расчетная температуру воздуха внутри бокса будет стабильно равнойt вр =+20 ˚С при температуре наружного воздуха t н =-40 ˚С. Записываем формулу

в ячейку I21: =I20-1000*I17/$D$21

t о = t п N / G р

Это второе уравнение. В нем те же две неизвестные.

Итак, имеем систему из двух уравнений, одно из которых – нелинейное трансцендентное. Как решать такие уравнения я подробно рассказал в статье « ». Но нам сейчас необходимо решить систему уравнений...

21. Делаем так:

— «становимся мышью» на ячейку I19 (активируем эту ячейку)

— вызываем: «Сервис» — «Подбор параметра…»

— пишем в окне «Подбор параметра»:

Установить в ячейке: I19

Значение: 61,8 (переписываем значение из ячейки I18)

Изменяя значение ячейки: I20

— жмем на кнопку ОК

— в появившемся окне «Результат подбора параметра» читаем:

Подбор параметра для ячейки I19.

Решение найдено.

Подбираемое значение: 61,8

Текущее значение: 61,8

— жмем ОК

Считываем результаты — температуру воды на подаче tп (˚С) и температуру воды на обратке (˚С) соответственно

в ячейке I20: =92,9

и в ячейке I21: =I20-1000*I17/$D$21 =71,9

Замечания и выводы:

Я постоянно напоминал по ходу статьи, что расход воды, определенный для расчетных температур не изменяется и при любых других температурах наружного воздуха! Изменение количества подаваемого тепла производится изменением температуры теплоносителя – воды – на подаче. Этот способ называется качественным регулированием теплоснабжения и является «правильным»! Однако, изменить количество подаваемого тепла можно и изменяя расход теплоносителя в системе. Этот способ называется количественным регулированием и является «не совсем правильным» или «совсем не правильным».

Если система отопления сложная, разветвленная, то, конечно, проще просчитать и отрегулировать гидравлику системы на один постоянный расход! При значительных изменениях расхода во время эксплуатации иногда вообще невозможно сбалансировать систему. Поэтому практику регулировки отопления закрыванием-открыванием задвижек считаю порочной и могу рекомендовать к использованию лишь в исключительных случаях! (Вы скажите — «У нас у многих вся страна – исключительный случай!», и я буду вынужден согласиться.)

Что показывают температурные графики, изображенные на рисунке выше? Они показывают, например, что при температуре наружного воздуха t н =-20 ˚С для того, чтобы внутри бокса температура воздуха стабильно оставалась равной t вр =+20 ˚С при неизменном расходе теплоносителя G р =0,239 т/час последний должен иметь температуру на входе в систему t п =+72,7 ˚С. В установившемся режиме температура воды на выходе из системы отопления будет равна t о =+58,6 ˚С.

Бокс из примера я умышленно со всех сторон оградил однотипным (деревянным) ограждением одной толщины для простоты расчета потерь тепла. В реальных жизненных примерах у объектов, как правило, ограждения имеют сложную геометрию, вырезы под окна, двери и сами сделаны из нескольких слоев различных материалов. К тому же часть ограждающих конструкций может примыкать к другим объектам или земле. Примеры расчета теплопотерь реального здания, помещения постараемся рассмотреть в ближайших статьях рубрики « ».

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» не забудьте подтвердить подписку кликом по ссылке в письме , которое тут же придет к вам на указанную почту (иногда - в папку « Спам» зависит от ваших индивидуальных настроек почты) !

Я не упомянул в статье ни одного СНиПа или ГОСТа, регламентирующего расчеты в рассмотренной области, хотя они, конечно, есть. Специалисты – теплотехники их знают, для них они «настольные книги». Неспециалисты из жизненного опыта решат, какая расчетная температура наружного воздуха для их географического района и какой должна быть расчетная температура воздуха внутри интересующего их объекта, или найдут легко эти значения в Интернете (включая коэффициенты теплопроводности материалов ограждений)…

Главной моей целью при написании этой статьи было доходчиво и понятно донести основы расчетов теплопотерь объектов типа бокс (ограждающие конструкции и воздух внутри) и понимание основ расчетов систем водяного отопления. Насколько это удалось – решит для себя каждый из Вас, уважаемые читатели! А я надеюсь узнать об этом по Вашим комментариям к статье!

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные