Диффузионная сварка в вакууме

Атомы веществ находятся в постоянном движении, вот почему жидкости и газы могут смешиваться. Твердые тела тоже имеют подвижные элементарные частицы, но у них более жесткая кристаллическая решетка. И все же, если два твердых тела сблизить на расстояние взаимодействия атомных сил, то в месте контакта частицы одного вещества будут проникать в другое и наоборот. Такое взаимное проникновение веществ получило название диффузии, а эффект был положен в основу одного из методов соединения металлов. Он так и называется - диффузионная

Что можно соединять диффузионной сваркой

Диффузионная сварка в вакууме имеет огромные технологические возможности. С ее помощью можно соединять:

  • Металлы однородной и неоднородной структуры, а также их сплавы. Тугоплавкие металлические вещества типа тантала, ниобия и вольфрама.
  • Вещества неметаллического характера с металлами: графит со сталью, медь со стеклом.
  • Материалы конструкционные на основе из металла, керамику, кварц, ферриты, стекло, полупроводниковые структуры (однородные и неоднородные), графиты и сапфир.
  • пористые с сохранением их свойств и текстуры.
  • Полимерные вещества.

Касаемо конфигурации и размера заготовок - они могут быть разными. В зависимости от величины рабочей камеры, можно работать с деталями от нескольких микрон (полупроводниковые элементы) до нескольких метров (сложные слоистые структуры).

Как устроена диффузионная установка

Комплекс для сварки диффузионным методом включает следующие основные элементы:

  1. Рабочую камеру. Она изготовлена из металла и предназначена для ограничения рабочей среды, в которой создается вакуум.
  2. Станину - шлифованную подставку. На нее опирается рабочая камера, вдоль которой она может перемещаться.
  3. Вакуумный уплотнитель. Является прокладкой между камерой и подставкой.
  4. Роликовый механизм и прижимной винт. С их помощью осуществляется перемещение камеры вдоль направляющих и фиксация ее на подставке.
  5. Насос вакуумный. Создает в рабочей зоне.
  6. Генератор с индуктором. Выступают системой нагрева свариваемых деталей.
  7. Пуансоны жаропрочные, и представляют механизм сжатия деталей под заданным давлением.

В зависимости от модификации установки диффузионной сварки могут отличаться формой камер и способом их герметизации. Также разными бывают методы разогрева деталей. Могут использоваться радиационные нагреватели, генераторы высоких токов, установки тлеющего разряда, электронно-лучевые нагреватели.


Диффузионные процессы при сварке

Если взять шлифованные металлические пластины, соединить их и положить под груз, то через несколько десятков лет будет заметен эффект обоюдного проникновения металлов друг в друга. Причем глубина проникновения будет в пределах миллиметра. Все дело в том, что скорость диффузии зависит от температуры соединяемых материалов, расстояния между элементарными частицами веществ, а также от состояния контактирующих поверхностей (отсутствия загрязнений и окислений). Вот почему в естественных условиях ее процесс протекает так медленно.

В промышленности для быстрого получения соединения процесс диффузии ускоряют, учитывая все эти условия. В рабочей камере:

  • Создают вакуум с остаточным уровнем давления до 10 -5 мм ртутного столба либо наполняют среду инертным газом. Таким образом детали не подвержены воздействию кислорода, который является окислителем любого металла.
  • Материалы разогревают температурой в 50-70% от температуры плавления заготовок. Этим добиваются увеличения пластичности деталей за счет более подвижного состояния их элементарных частиц.
  • На заготовки оказывают воздействие механическим давлением в пределах 0,30-10,00 кг/мм 2 , сближая межатомные расстояния до размеров, позволяющих установить общие связи и взаимно проникнуть в близлежащие слои.

Требования к подготовке материалов

Перед тем как поместить заготовки свариваемых элементов в диффузионную установку, их подвергают предварительной обработке. Основная цель обработки контактирующих частей заготовок направлена на получение более гладких, ровных и однородных поверхностей, а также удаление из зоны соединения невидимых маслянистых образований и грязи. Обработка заготовок бывает:

  • химической;
  • механической;
  • электролитической.

Пленки окислов, как правило, не влияют на процесс диффузии, так как они самоликвидируются в процессе нагревания в вакуумной среде.

Когда диффузионная сварка протекает недостаточно эффективно между веществами, у которых неодинаковый температурный коэффициент расширения, либо образуется хрупкий шов, используют так называемые буферные прокладки. Ими может служить фольга различных металлов. Так, медная фольга применяется при диффузионной сварке заготовок из кварца.


Характеристики получаемых соединений

В отличие от традиционных способов сварки расплавлением, где к основному металлу вводится дополнительный металл в шве, диффузионная сварка позволяет получить однородный шов без серьезных изменений в физико-механическом составе места соединения. Готовый стык обладает следующими показателями:

  • наличие сплошного шва без пор и образований раковин;
  • отсутствие окисных включений в соединении;
  • стабильность механических свойств.

Благодаря тому что диффузия - это естественный процесс проникновения одного вещества в другое, в зоне соприкосновения не нарушается кристаллическая решетка материалов, а следовательно, отсутствует хрупкость шва.


Соединение деталей из титана

Диффузионная сварка титана и его сплавов характеризуется получением качественного соединения при высокой экономической эффективности. Она широко применима в медицине для изготовления деталей протезов, а также в других областях.

Детали подвергают нагреву до температур на 50º - 100º ниже, чем температура, при которой происходит полиморфное превращение. При этом на материалы оказывают небольшое давление в 0,05-0,15 кгс/мм².

Химический состав титанового сплава не влияет на крепость соединения элементов таким способом сварки.

Преимущества метода

При диффузионной сварке возможно:

  • соединять однородные и неоднородные твердые вещества;
  • избегать деформации деталей;
  • не использовать расходники в виде припоев и флюсов;
  • получать безотходное производство;
  • не применять сложные системы приточно-вытяжной вентиляции, так как в процессе не образуется вредных паров;
  • получать любую площадь зоны контактного соединения, ограниченную только возможностью оборудования;
  • обеспечить надежный электрический контакт.

К этому следует добавить отличный эстетический вид готовой детали, которая не требует применения дополнительных операций обработки, таких как удаление сварной окалины, например.

Недостатки технологии

Диффузионная сварка является сложным технологическим процессом, к ее основным недостаткам можно отнести:

  • необходимость применения специфического дорогостоящего оборудования;
  • потребность в наличии производственных площадей, установка имеет немалые габариты;
  • требование иметь специальные знания, навыки и понимание процесса работы;
  • затраты времени на тщательную предварительную обработку заготовок;
  • содержание вакуумной установки в предельной чистоте, иначе невидимая пыль может оседать на свариваемых элементах и приводить к браку соединения;
  • трудность проверки качества шва без необходимости его разрушения.

Учитывая все это, а также специфику использования вакуумных установок, диффузионная сварка востребована только в условиях предприятий, а не частного использования.

Промышленное оборудование для диффузионной сварки

Существует несколько типов промышленного оборудования, разработанных для диффузионной сварки. Они в основном отличаются друг от друга спецификой свариваемых материалов и применением разных систем нагрева деталей.

Установка типа МДВС предназначена для производства гибких медных шин, контактных групп выключателей высоковольтных из меди и керрита, деталей газлифтных клапанов насосов скважинных, выполненных из нержавейки и твердых сплавов металлов. В системе применим эффект электроконтактного нагрева.

Сварочный комплекс типа УДВМ-201. Выполняет соединение методом диффузионной из стекла разных марок. Нагрев рабочей поверхности осуществляется методом радиационного излучения.

Оборудование сварочное УСДВ-630. Установка для сварки материалов композитных на основе титана и меди. Такие системы позволяют нагревать большие по площади детали.

Машина МДВС-302 для диффузионной сварки с применением высокочастотного нагрева деталей. Характеризуется наличием малогабаритного генератора на транзисторной схеме.

Кузнечный вид сварочного соединения был изобретен человеком самым первым. Он построен на термомеханическом принципе, когда две разогретые детали объединялись под давлением молота. Конечно, сегодня он практически не используется. Зато практически по тому же принципу придумана диффузионная сварка.

В нашей статье пойдет речь о современном термомеханическом сваривании металлов, которое происходит на атомарном уровне. Что это за способ и какие плюсы и минусы он имеет?

Что такое диффузия

Если вернуться к школьному курсу физики, то вспоминается один из таких процессов, как диффузия.

Это взаимное проникновение молекул одних веществ среди молекул (или даже атомов) других. Причем такое смешивание между ними приводит до выравнивания соотношений. Благодаря диффузии мы ощущаем запахи и даже привкусы растворенных веществ в воздухе, или же можем смешивать различные жидкости.

Но диффузия возможна и между твердыми субстанциями, например, металлами. На этом принципе и была построена диффузионная сварка, изобретенная еще в 50-х годах прошлого века.

Технология диффузионной сварки

Легко перемешать между собой газообразные или жидкие вещества. А как быть с металлами, или вообще разнородными материалами.

Технология построена по следующему принципу:

  • Поверхности, соединяемые таким способом, должны быть подготовлены. Главное - это наличие шероховатости в местах будущей сварки. Особенно это касается инструментальных марок стали или жаропрочных материалов.

Подготовка поверхностей может проводиться несколькими способами: химическими, механическими или электролитическими.

  • В вакуумной или газовой защитной среде стыки деталей разогревают до показателей, составляющих 0,5-0,7 от температуры плавления.

Именно нагревание до такого состояния ускоряет процесс диффузии и, к тому же, происходит взаимная деформация на стыках.

  • Разогретые в месте соединения детали поддаются давлению для ускоренного процесса смешивания атомов вещества.

В некоторых случаях сжатие заменяется ударной нагрузкой. Сварное соединение образуется в момент динамического удара. Все происходит очень быстро, за доли секунды.

Также в качестве катализатора процесса между соединяемыми частями на стыке может прокладываться прослойка специального порошка или тонкой фольги.

В качестве таких прокладок применяют фольгу из меди, никеля, серебра и даже золота. Слой очень тонкий - порядка 2-7 микрон. Какую прослойку использовать определяют по видам свариваемых материалов.

Собственно, это и есть технология диффузионной сварки. Схема проста: подготовка-нагрев-сжатие.

Сам комплекс агрегатов, позволяющий выполнить весь процесс по соединению материалов, состоит из следующих узлов:

  1. Камера.
  2. Станина.
  3. Вакуумный уплотнитель.
  4. Насос.
  5. Генератор и индуктор.
  6. Механизм сжатия.

Камера служит местом, где непосредственно размещаются детали и создается вакуумная среда.

Станина, как и в любом другом станке, служит подставкой для размещения на ней узлов установки. В данном случае на ней монтируется камера. Она, в свою очередь, с помощью роликового механизма может перемещаться по станине.

Уплотнитель - это прокладка между камерой установки и подставкой.

Насос работает на откачку воздуха и устройства вакуума.

Генератор и индуктор обеспечивают нужный нагрев стыков соединяемых деталей.

Сжатие обеспечивается механизмом, состоящим из масляного насоса и гидравлических цилиндров. За счет них достигается нужное давление.

Конечно, это один из видов установки. Но, невзирая на различные типы нагревателей (электронно-лучевые, радиационные, установка тлеющего заряда, генератор высоких токов), сохраняется главный принцип - нагрев и сжатие.

Какие материалы можно сваривать

Диффузионная сварка металлов дала неплохой прорыв в технологическом плане. Были открыты большие возможности в производстве.

Что можно соединять путем такого сваривания в вакууме?

  • Разнородные по своей структуре металлы, их сплавы, а также очень тугоплавкие типа вольфрама. Примером может послужить соединение по схеме чугун-сталь-чугун в тормозных колодках.
  • Возможна сварка металлических деталей с неметаллами. Например, сварка медных частей со стеклом, металла с металлокерамикой, или же графита со сталью.
  • Диффузионная сварка соединяет алюминиевые детали с чугунными, никелевыми или медными.
  • Соединение жаропрочных марок стали с титаном.
  • Различные спайки с титаном (медь, стекло, молибден).

То есть такой вид сварки позволил объединять те материалы, что не позволяют использовать другие способы варки. В итоге данный метод быстро нашел применение в различных отраслях промышленности от автомобилестроения до космического производства.

Положительные и отрицательные моменты

Как не существует идеальных подходящих под любые условия материалов, так и нет до сих пор технологий, обладающих только положительными свойствами.

Плюсы оборудования

В озможность соединения разнородных материалов между собой

Требуется минимальное количество дополнительных расходных материалов

Диффузионная сварка – процесс производства неразъемного сварного соединения за счет диффузии (внедрения) атомов одного металла (обычно более мягкого) в кристаллическую решетку другого (более твердого). Таким образом, можно получать прочные неразъемные соединения разнородных металлов (биметалл), а так же неметаллов (например, керамика со стеклом).

Способ был выдуман в 53-м Н.Ф. Казаковым и широко используется до сих пор в частности при производстве гидромоторов авиационной техники. Возможно использование и в других направлениях, в особенности там, где необходимо получить прецизионные пары трения, а детали и узлы собраны с применением антифрикционных материалов и работают на высоких оборотах. В качестве примера такой пары можно привести соединение оловяно-свинцово-никелевой бронзы БрОСН-10-2-3 со сталью 30Х3ВА – оно используется в блоке цилиндров авиационного плунжерного насоса.

Оборудование:

Понадобится вакуумная печь, способная обеспечить среднюю или высокую степень вакуума и приспособление с усилием сжатия 1-4 кгс/мм2. Таким приспособлением может быть специальное устройство, собранное внутри печи или графитовый контейнер, представляющий собой стакан с резьбой, на который накручивается крышка. При сварке бронзы со сталью в таком контейнере можно создать необходимое для диффузии первоначальное давление за счет большого коэффициента линейного термического расширения бронзы.

Охлаждение садки обеспечивается подачей аргона в камеру. Быстрое охлаждение позволяет так же закалить стальную часть узла до твердости 40 HRC.

Технология сварки бронзо-стальных деталей гидравлических агрегатов

Некоторые особенности сварки бронз со сталями

Сварка бронз со сталями в вакууме дает возможность получать соединения с минимальным количеством окисных и других неметаллических фаз в зоне соединения. Отсюда высокая надежность и стабильность сварных соединений. Этому способствуют процессы диссоциации и возгонки окисных и жировых пленок на свариваемых поверхностях бронзы и стали, которые в условиях вакуума протекают значительно интенсивнее, чем при нагреве в газовых защитных средах или соляных ваннах. Так, например, растекаемость бронзового расплава (25,5% Sn) по поверхности малоуглеродистой стали при температуре 810-820 градусов при прочих равных условиях в вакууме (10 -2 Па) на порядок выше, чем в соляной ванне (NaCl+KCl). С повышением температуры это отношение еще больше возростает.

При изготовлении бронзо-стальных деталей гидравлических агрегатов часто возникает необходимость упрочнения стали путем ее термической обработки (закалки). При нагреве заготовок в соляной ванне операции сварки и закалки легко совмещаются в одном термическом цикле. В вакууме эти операции совместить технически сложно, за исключением тех случаев, когда закалка осуществима при скоростях охлаждения, реализуемых в потоке инертного газа (для специальных сталей). Поэтому термообработку бронзо-стальных деталей предполагается производить после сварки, как самостоятельную операцию. При этом температура закалки не должна превышать предшествующую температуру сварки.

Как показали экспериментальные исследования, термообработка не оказывает отрицательного влияния на свойства соединения. Прочность на разрыв сварных соединений ст. 30Х3ВА с Бр.ОС 10-10, полученных в вакууме и прошедших термообработку (закалка с 850-860 о С в масло, отпуск при 560 о С в течение 6 час) составляет, по экспериментальным данным, 310-330 МПа (31-33 кгс/мм 2) против 250-270 Мпа (25-27 кгс/мм 2) непосредственно после сварки. Последующая термообработка, как видно, благоприятно сказывается на упрочнении Бр. ОС10-10. Соединения этой стали с Бр.ОСН 10-1-3 после сварки и после аналогичной термообработки имеют примерно одинаковую прочность 300-330Мпа (30-33 кгс/мм 2)

Следует отметить положительное влияние предварительного гомогенизирующего отжига бронз на их прочность в сварных соединениях. Отжиг в вакууме при 750 о С в течение 5 часов, помимо удаления избытка растворенных газов, способствует получению после сварки более равномерного распределения свинцовой составляющей в ее структуре. Прочность возрастает до 350-380 МПа (35-38 кгс/мм 2) для обеих марок бронз, правда, последующая термообработка (закалка с отпуском) возвращает прочность на прежний уровень (300-330МПа).

Необходимо учитывать высокую упругость пара таких элементов как свинец и цинк, которые часто содержатся в бронзах. В результате их испарения возможны изменения химического состава бронзы в приповерхностном слое и образование в ней пор.

Количественная оценка средней скорости испарения свинца с поверхности Бр. ОСН 10-2-3 и Бр. ОС10-10 соответственно при температуре 870-860 о С за время сварки (≈ 10 мин) показывает, что потеря свинца составляет для обеих бронз от 10 до 15% от его общего количества в исследуемых образцах (d=15мм; d=3,5 мм). Толщина приповерхностного слоя, обедненного свинцом, составляет при этом 0,2-0,3мм. В остальном объеме образцов состав бронз остается практически без изменений. Средние скорости испарения свинца в течение первых 5 мин. изотермической выдержки при температуре сварки составляют 6х10 -5 и 30х10 -5 кГ/м 2 с, а в последующие 5-тиминутные периоды изотермической выдержки – 6х10 -5 и 15х10 -5 ; 4х10 -5 и 14х10 -5 ; 3х10 -5 и 13х10 -5 кГ/м 2 с. и т.д. соответственно. В таблице представлены экспериментальные значения средней скорости испарения свинца с поверхности Бр. ОСН 10-2-3 и Бр. ОС 10-10 (Vисп.х10 5 кГ/м 2 с) в течение первых 10 мин. изотермической выдержки при различных температурах в вакууме 10 -2 Па.

Бронза Температура, о С
700 750 800 860 900
Бр. ОСН 10-2-3 ≈0 0,46 0,73 7,3 14,2
Бр. ОС 10-10 ≈0 3 5,5 22 43

Относительно высокая скорость испарения свинца с поверхности Бр.ОС 10-10 обусловлена более высокой по сравнению с Бр. ОСН 10-2-3 его концентрацией в жидкой фазе и в структуре, а также наличием в этой бронзе широких разобщающихся жидких прослоек по границам зерен, по которым свинец из глубины может свободно диффундировать к поверхности.

Скорость испарения свинца при температуре твердо-жидкого состояния бронзы, как показывают экспериментальные исследования, максимальна в начальный момент, при достижении бронзой температуры сварки, затем убывает до какого-то постоянного уровня, определяемого интенсивностью поступления свинца к поверхности из глубины бронзы. Последнее в большой мере зависит от характера распределения и количества жидкой фазы в структуре бронзы. Межзеренное распределение жидкой фазы и наличие широких сообщающихся на большую глубину (транзитных) каналов в структуре бронзового сплава увеличивают вероятность потерь свинца на испарение. В случае мелкокапельного распределения и наличия в структуре обособленных тонких межзеренных прослоек продвижение свинца к поверхности затруднено и его испарение со временем может прекратиться.

Приведенные выше значения испарения были получены в таких условиях нагрева, когда пары могли беспрепятственно распространиться от нагреваемого образца и осаждаться на холодные стенки вакуумной камеры, т.е. при нагреве в свободном (открытом) состоянии.

Скорость испарения свинца заметно падает, если бронзовый образец нагревать в вакууме в закрытом сосуде, например, в графитовом контейнере с плотно закрытой крышкой. Так, например, средняя скорость его испарения с поверхности Бр. ОС 10-10, выдержанной при 840-850 о С в течение 45 мин. в открытом стакане, составила 6,5х10 -5 кГ/м 2 с, в закрытом – 3,1х10 -5 кГ/м 2 с. При этом на стенках вакуумной камеры осадилось в первом случае 0,126 г, во втором – только 0,005 г свинца (масса образцов 6…7 г). Т.е. в закрытом сосуде остается практически вся испарившаяся легкоплавкая эвтектика. При последующих нагревах новых образцов в том же закрытом сосуде без удаления свинцовых конденсатов от предыдущих опытов скорость испарения продолжает снижаться до уровня, определяемого интенсивностью проникновения паров свинца через несплошности закрытого сосуда.

Таким образом, использование для оснастки закрытого типа, например, в виде графитовых кассет, позволяет значительно уменьшить потери свинца на испарение и практически полностью предотвратить его осаждение на холодные стенки вакуумной камеры. В случае диффузионной сварки открытых заготовок необходимо по возможности ограничивать свободные для испарения поверхности бронзы. С этих соображений, например, при сварке телескопических соединений, целесообразно применять вместо тонкостенных втулок цельные бронзовые стержни.

В заключении следует отметить, что такие работы можно производить при более низкой температуре, чем, например, в среде защитных газов или соляной ванне. Так как растекаемость жидкой фазы бронзы по стали в вакууме хорошая, температура сварки может быть всего на 15-20 градусов выше равновесного солидуса бронзы.

Нагрев в вакууме имеет также определенные технические преимущества по сравнению с нагревом в газовых защитных средах. Получение и контроль низкого остаточного давления значительно проще, чем получение и контроль нейтральных и восстановительных газов соответствующей чистоты. В вакуумных установках с достаточной надежностью можно поддерживать необходимую степень разряжения. Кроме того, расходы по эксплуатации вакуумных установок ниже по сравнению с печами с газовой атмосферой.

Технологическая оснастка для сборки и сварки деталей гидравлических агрегатов

При сварке бронз со сталями в твердо-жидком состоянии бронзы, независимо от способа нагрева, требуется применение различных приспособлений и технологической оснастки, предназначенных для сборки и фиксации свариваемых изделий при загрузке, нагреве и извлечении их из сварочной установки или печи. Для сборки телескопических соединений могут быть использованы гидравлические или механические прессы с необходимым усилием запрессовки, которое определяется действительной величиной натяга и жесткостью свариваемых заготовок. В собранном виде заготовки размещают в вертикальном положении на подставке или подвеске и загружают в печь (нагревательное устройство). Давление в контакте свариваемых материалов в этом случае создается за счет разного термического расширения бронзы и стали. Какие-либо дополнительные устройства для этой цели не требуются.

Для сварки стыковых соединений, например, при изготовлении бронзо-стальных башмаков или блоков цилиндров гидравлических агрегатов, на установках, в которых отсутствуют системы давления, следует применять сборочно- сварочные приспособления, с помощью которых в условиях общего нагрева создавалось бы требуемое силовое воздействие на свариваемые детали.

Основное назначение приспособления состоит в том, чтобы в процессе нагрева за счет термических напряжений, возникающих в системе приспособления-свариваемые изделия, сгладить имеющиеся на соединяемых поверхностях макро- и микронеровности и образовать между ними физический контакт.

Кинетика развития внутренних усилий и деформаций в системе приспособление-свариваемые изделия зависит от многих факторов: физико-механических характеристик материалов, конструкции и геометрических размеров всех элементов системы, распределения температур между ними и по сечению каждого элемента и т.д.

Ниже рассмотрены методы конструирования приспособлений для сборки и сварки стыковых соединений деталей гидравлических агрегатов (башмаков и блоков цилиндров) при нагреве в вакууме.

На рисунке 1 представлено приспособление для сборки и сварки стыкового соединения бронза-сталь блока цилиндров 1.


Оно состоит из тонкостенного стакана 2 и навинчиваемой на него сверху до упора в свариваемые детали тонкостенной крышки 3. В отличие от известных конструкций, состоящих, как правило, из двух запорных фланцев и съемных стяжных элементов (одного или нескольких стяжных болтов, распорных втулок и пр.), рассматриваемое приспособление содержит две однотипные детали, в которых роль стяжного элемента играют тонкостенные цилиндрические обечайки, выполненные заодно с опорными фланцами и связанные друг с другом с помощью резьбового соединения.

Приспособление вместе со свариваемыми изделиями образует замкнутую систему, в которой следует различать активную часть (свариваемые детали изделия) и пассивную часть (стяжные элементы). Для возникновения внутренних напряжений в системе (сжатия в активной части и растяжения в пассивной) необходимо, чтобы при нагреве суммарное термическое удлинение элементов активной составляющей системы было больше, чем термическое удлинение пассивной. Это достигается соответствующим подбором материалов приспособления по их коэффициентам термического расширения.

Элементы приспособления должны иметь достаточно высокое сопротивление пластической деформации при высоких температурах. Для их изготовления пригодны жаропрочные материалы, имеющие стабильную структуру и сохраняющие свои свойства при многократном термоциклировании. При сварке в вакууме следует учитывать также возможность схватывания элементов приспособления друг с другом. и сор свариваемыми изделиями.

Наиболее удовлетворяют перечисленным выше требованиям углеграфитовые материалы, например, высокопрочный графит марок МПГ-6 или ВПП. Они обладают наиболее низким из доступных материалов коэффициентом термического расширения, и дает возможность получать большой деформационный потенциал приспособления, имеют прочность, достаточную для создания требуемого силового воздействия на свариваемые изделия, химически стойки и не взаимодействуют в вакууме с большинством металлов при высоких температурах (до 1000 градусов Цельсия), термостойки, легко обрабатываются и, что также очень важно, могут оказывать дополнительное защитное действие на соединяемые металлы, связывая возможные примеси кислорода во внутреннем пространстве приспособления.

Принцип действия приспособления (оснастки)

Заключается в следующем. Собранные под сварку детали 1 (рис.1) ставят на дно стакана 2 и сжимают вручную с помощью навинчивающейся сверху крышки 3. Откачка воздуха, замкнутого внутри такой кассеты, происходит в вакуумной печи (10-2) через естественные несплошности в резьбовом соединении крышки со стаканом. При длительной откачке внутри кассеты создается достаточное для осуществления качественной сварки степень разрежения. В то же время проникновение легкоиспаряющихся компонентов бронзы, например, свинца, через несплошности резьбового соединения затруднено, и внутри кассеты в результате этого создается давление паров, препятствующее дальнейшему его испарению с поверхности деталей. Потери металлов на испарение тем меньше, чем меньше объем незаполненного пространства внутри кассеты и чем плотнее резьбовое соединение крышки со стаканом. Выполнению последнего условия способствуют внутренние усилия, возникающие в системе приспособление – свариваемые изделия при нагреве ее до высокой температуры. Под действием этих усилий (растяжения в стяжных элементах оснастки) резьбовое соединение еще больше уплотняется и сопротивление потоку паров металлов таким образом возрастает.
Передача осевого усилия в приспособлении происходит по наклонным поверхностям резьбы. В результате этого в резьбе возникают равномерно распределенные по окружности радиальные усилия, которые деформируют тонкие цилиндрические обечайки в соответствующих направлениях, как это схематически показано пунктиром на рис.1. Накапливаемая при нагреве упругая деформация приспособления складывается таким образом из деформации его стяжных элементов не только в осевом, но и в радиальном направлении. После достижения соединяемыми деталями температуры сварки, когда сопротивление пластической деформации бронзы невелико, часть накопленной упругой деформации приспособления расходуется на сглаживание макро-микронеровностей в стыковом соединении, часть – на устранение вероятных несплошностей и перекосов, вызванных неточностями изготовления и сборки свариваемых деталей и элементов приспособления. Чем больше деформационный потенциал приспособления, тем больше вероятная пластическая деформация осадки бронзы в процессе сварки.
Необходимым условием образования плотного (без пор и микронесплошностей) соединения при диф.сварке является наличие физического контакта свариваемых поверхностей металлов друг с другом по всей площади сварного соединения. Прочность соединения возрастает, если фактическая площадь физического контакта близка или равна величине его геометрической площади. При сварке бронзы со сталью физический контакт образуется, главным образом, за счет пластического течения бронзы, как более мягкого материала, путем заполнения ею неровностей на поверхности стали. При этом пластическая деформация происходит не только в приповерхностных слоях бронзы, но и во всем ее объеме, воспринимающем сварочное давление. В связи с этим величина пластической деформации (осадки) бронзовой заготовки должна быть больше суммарной высоты микронеровностей на свариваемых поверхностях, и при оценке требуемой величины осадки при сварке можно лишь в первом приближении ориентироваться по средней статистической высоте макро- и микронеровностей стыкуемых поверхностей.
При определении требуемой величины деформационного потенциала приспособления необходимо учитывать также шероховатость контактирующей с бронзой опорной поверхности приспособления, неплоскостность, непараллельность (биение относительно центральной оси) опорных поверхностей свариваемых заготовок и всех элементов приспособления, т.е.

где К – деформационный потенциал системы;
Δi – различные отклонения от плоскости и биения опорных поверхностей свариваемых заготовок и элементов приспособления.
Так, например, если предположить, что для рассматриваемой конструкции приспособления (рис 1) средняя высота микронеровностей свариваемых поверхностей бронзы и стали, а также опорной поверхности бронзы и контактирующей с ней опорной поверхности при способления составляет 0,025 мм и все стыкуемые поверхности, в том числе в резьбовом соединении приспособления, имеют неплоскостность и биение, равные по 0,02 мм соответственно, то деформационный потенциал системы должен быть

К>(4*0,025+4*0,02+2*0.02+2*0,02)=0,26 мм
К>0,026

Сборочные эскизы. сварка систем «бронза-сталь» в графитовых контейнерах




Справка: Технология диффузионной сварки востребована в промышленности при производстве гидромоторов для авиационной техники — плунжерные насосы и т.д. и в других отраслях промышленности, где нужно получить биметаллы.

Лекция № 9.

Диффузионная сварка

9.1. Сущность диффузионной сварки.

Диффузионная сварка входит в группу способов сварки давлением, при которых соединение за счет пластической деформации свариваемых частей при температуре ниже температуры плавления, т.е. в твердой фазе. Отличительной особенностью является применение повышенной температуры при сравнительно небольшой остаточной деформации.

Процесс можно осуществлять с использованием большинства тепловых источников, известных при сварке. Наибольшее применение на практике находят индукционный, радиационный, электронно-лучевой нагрев, а также нагрев проходящим током и нагрев в расплаве солей.

Контакт соединяемых деталей при сварке выполняется либо непосредственно, либо через прослойки (фольговые или порошковые прокладки, покрытия).

Чаще всего диффузионную сварку проводят в вакууме. Однако принципиально возможно осуществление процесса в атмосфере защитных или восстановительных газов или их смесей (диффузионная сварка в контролируемой атмосфере). При сварке материалов, имеющих относительно малое сродство к кислороду, процесс можно вести даже на воздухе. В качестве среды для диффузионной сварки могут быть использованы и расплавы солей, выполняющие одновременно роль источников тепла.

Процесс сварки с помощью диффузионного соединения условно подразделяют на две стадии.

На первой стадии происходит нагрев материалов до высокой температуры и приложение давления, что вызывает пластическую деформацию микровыступов, разрушение и удаление различных пленок на контактируемых поверхностях. При этом образуются многочисленные участки непосредственного металлического контакта (металлические связи).

Вторая стадия – ликвидация оставшихся микронеровностей и образование объемной зоны взаимного соединения под действием диффузии.

9.1.1. Преимущества и недостатки диффузионной сварки.

Преимущества диффузионной сварки:

Возможность соединять разнородные материалы без каких – либо особых трудностей (сталь с чугуном, титаном, ниобием, вольфрамом, металлокерамикой; платину с титаном; золото с бронзой и т.д.);

Возможность выполнения соединений разнотолщинных деталей;

Обеспечение равнопрочности основного металла и сварного соединения;

В процессе сварки отсутствует плавление металла, что исключает влияние неблагоприятных металлургических явлений на сварное соединение, удешевляет изготовление конструкции (за счет отсутствия флюсов, припоев)

Ограничения применения и недостатки технологии:

Низкая производительность процесса из-за высокой длительности цикла сварки;

Сложность оборудования (особенно вакуумного) и технологической оснастки, подвергающейся одновременно нагреву и нагружению;

Высокие требования к качеству контактных поверхностей.

9.2. Классификация процессов диффузионной сварки.

В практике диффузионной сварки известно применение двух технологических схем процесса, различающихся характером приложения нагрузки или напряжения действующего в течение цикла:

1) Диффузионная сварка по схеме свободного деформирования – при этом используют постоянную нагрузку по величине ниже предела текучести.

Рис. 9.1. Схема диффузионной сварки свободным деформированием:

1- система нагружения; 2 – нагреватель; 3 – детали.

2) Диффузионная сварка по схеме принудительного деформирования (ДСПД - процесс) – при этом нагрузка и пластическая деформация обеспечивается специальным устройством, перемещающимся в процессе сварки с контролируемой скоростью.

Рис. 9.2. Схема диффузионной сварки принудительным деформированием:

1 – система деформирования; 2 –нагреватель; 3 – детали.

9.3. Технология диффузионной сварки.

9.3.1. Подготовка поверхностей к сварке.

Свариваемые поверхности должны быть обработаны с чистотой поверхности Ra < 1,25 мкм. Предпочтительно применение механической обработки. Непосредственно перед сваркой детали проходят очистку от жировых и других загрязнений, а также от оксидов методами химической обработки (травление, обезжиривание).

9.3.2. Применение покрытий и промежуточных прокладок.

Покрытия наносят чаще всего гальваническим или термовакуумным методами на одну или обе свариваемые детали, но, как правило, только в пределах площади их контактирования. При сварке мелких деталей допускается нанесение покрытия на всю поверхность. Покрытия применяют для защиты от окисления в процессе нагрева при сварке сплавов, в состав которых входят активные по отношению к кислороду элементы (Cr , Al и др.). Чаще всего используют никелевое, медное или серебряное покрытие толщиной 5 – 10 мкм.

При сварке материалов, образующих в контакте при температуре процесса интерметалидные фазы, необходимо применение барьерных прослоек. Для этого могут быть использованы покрытия достаточной толщины, а также фольговые прокладки, изготавливаемые по форме площади контактирования.

9.3.3. Выбор параметров режима сварки

а) Рабочие среды.

В зависимости от свойств свариваемых материалов степень разряжения в вакуумной камере выбирают в диапазоне 1,3 – Па. При сварке малоуглеродистых сталей, меди, никеля требования к давлению наименее жесткие.

В качестве контролируемых атмосфер применяют осушенные аргон или гелий, очищенные и осушенные водород, азот или смесь азота с 6 – 8 % водорода.

На воздухе сваривают малоуглеродистые и некоторые инструментальные стали. При этом контактные поверхности заготовок после механической обработки защищают от окисления консервирующими покрытиями: эпоксидной смолой или глицерином.

Состав соляных ванн для диффузионной сварки определяется необходимой температурой, например, 850 – 870 С при использовании NaCl , 1000 - 1150 С – для BaCl 2 .

б) Параметры термодеформационного воздействия.

При сварке по схеме свободного деформирования основными параметрами являются температура сварки , давление р, время выдержки t (или степень остаточной деформации ).

Температуру сварки выбирают в диапазоне , иногда несколько ниже .

Скорость нагрева и охлаждения зависит от источника теплоты, и в большинстве случаев их не регламентируют.

Давление выбирают в диапазоне 0,8 – 0,9 предела текучести при температуре сварки.

Время выдержки в зависимости от температуры, давления, чистоты обработки контактных поверхностей может колебаться от нескольких секунд до нескольких часов.

При ДСПД – процессе основными параметрами являются температура Т, скорость роста нагрузки Р, скорость деформирования , время деформирования t , время выдержки в режиме релаксации .

9.3.4. Оборудование, применяемое при диффузионной сварке.

Установки для диффузионной сварки в общем случае имеет рабочую камеру, механизм для создания сварочного давления или деформирования, систему для получения рабочей среды, аппаратуру управления и контроля.

В настоящее время в эксплуатации находятся универсальные установки разных модификаций типа СДВУ, УДС, А-306, А-308, ОЗД, УДСПД и др.

Учитывая современную тенденцию применения диффузионной сварки для изготовления крупногабаритных изделий сложной формы, проводятся работы по созданию крупногабаритных установок модульного типа. Модуль такой установки снабжен автономными системами вакуумирования, нагрева и сжатия.

Контрольные вопросы:

1. Какие стадии включает процесс образования диффузионного соединения?

2. Назовите основные преимущества и недостатки диффузионной сварки.

3. По каким признакам можно классифицировать процессы диффузионной сварки?

4. Какие этапы включает подготовка поверхностей к диффузионной сварке?

5. Какие параметры входят в режим диффузионной сварки?

В 1953 г. профессором Н.Ф. Казаковым был разработан принципиально новый способ соединения материалов – диффузионная сварка в вакууме. При диффузионной сварке сварное соединение образуется в результате совместного воздействия давления и нагрева. Отличительной особенностью диффузионной сварки является применение относительно высоких температур нагрева и низких удельных давлений, обычно не превышающих предела текучести свариваемых материалов при температуре сварки. При диффузионной сварке выделяют две основные стадии образования качественного сварного соединения.

Первая стадия – создание физического контакта, при котором все точки соединяемых материалов находятся друг от друга на расстоянии межатомных взаимодействий. Вторая стадия – формирование структуры сварного соединения под влиянием процессов релаксации. Исследования, проведенные в нашей стране и за рубежом, показали, что параметрами, определяющими процесс соединения при диффузионной сварке в вакууме, являются давление, температура, длительность их воздействия, состояние и рельеф свариваемых поверхностей. При дальнейших исследованиях было установлено, что предварительная обработка свариваемых деталей (рельеф) влияет не только на создание физического контакта, но и в значительной степени определяет протекание диффузионных процессов за счет изменения тонкой структуры поверхностных слоев. Любая подготовка свариваемых поверхностей (механическая, электролитическая, химическая и др.) не исключает образование оксидов на поверхности металла. Однако этот фактор не всегда оказывает отрицательное влияние на протекание процесса, так как для большинства металлов нагрев в вакууме до температуры, используемой при сварке ((0,7–0,8) Т пл), и соответствующая выдержка во времени при этой температуре достаточны для самопроизвольной очистки свариваемых поверхностей от оксидов.

Давление, применяемое при способах сварки без расплавления материалов, по современным представлениям, выполняет три задачи: - разрушение в результате пластического течения поверхностных слоев металла и частичное удаление окисных пленок и загрязнений; - сближение свариваемых поверхностей для обеспечения физического контакта и эффективного атомного взаимодействия; - обеспечение активации поверхностей для протекания процессов диффузии и рекристаллизации. Процесс может осуществляться с использованием различных тепловых источников нагрева. Чаще всего на практике находят применение индукционный, радиационный, электронно-лучевой нагрев, а также нагрев проходящим током, тлеющим разрядом и в расплаве солей. В последнем случае расплав солей выполняет роль среды, в которой осуществляется диффузионная сварка. Кроме вакуума, в качестве среды могут быть использованы защитные или восстановительные газы. При сварке материалов, имеющих относительно небольшое сродство к кислороду, процесс можно вести на воздухе. В практике диффузионной сварки известно применение двух технологических схем процесса, различающихся характером приложения нагрузки. В одной из них используют постоянную нагрузку по величине ниже предела текучести. При этом процессы, развивающиеся в свариваемых материалах, аналогичны ползучести. Такую технологию называют диффузионной сваркой по схеме свободного деформирования. По второй схеме нагрузка и пластическое деформирование обеспечиваются специальным устройством, которое перемещается в процессе сварки с контролируемой скоростью. Такую технологию называют диффузионной сваркой по схеме принудительного деформирования. Диффузионной сваркой в вакууме практически освоено соединение около 500 композиций металлов, сплавов и неметаллических материалов.

К настоящему времени создано более 70 типов установок диффузионной сварки . Каждая установка, независимо от ее типа, должна включать в себя пять основных систем (рис. 1.43):

Рис. 1.43.: 1 – рабочая камера; 2 – система охлаждения; 3 – вакуумная система; 4 – источник нагрева; 5 - система давления

  • создания вакуума или контролируемой атмосферы (3);
  • сжатия свариваемых деталей (5);
  • нагрева (4);
  • охлаждения (2);
  • контроля параметров сварки и управления процессом.

Разработка и создание установок для диффузионной сварки в настоящее время ведутся в направлении унификации систем (вакуумной, нагрева, давления, управления) и сварочных камер. Меняя камеру в этих установках, можно значительно расширить номенклатуру свариваемых узлов. С помощью диффузионной сварки в вакууме, кроме уже отмеченных соединений металлов и сплавов, получают высококачественные соединения керамики с коваром, медью, титаном; электровакуумных стекол, оптической керамики, сапфира, графита с металлами; композиционных и порошковых материалов и др. Соединяемые заготовки могут быть весьма различны по своей форме, иметь компактные или развитые поверхности контактирования. Геометрические размеры свариваемых деталей находятся в пределах от нескольких микрометров (при изготовлении полупроводниковых приборов) до нескольких метров (при изготовлении слоистых конструкций).

Способ соединения диффузионной сваркой является экономичным. Он не требует дорогостоящих припоев, специальной проволоки и электродов, флюсов, защитных газов. Более того, отпадает последующая механическая обработка и потеря ценного металла; масса конструкции не увеличивается, что имеет место при сварке, пайке и склеивании. Свойства металла в зоне соединения не изменяются, поэтому термическая обработка необязательна. Установки для диффузионной сварки можно устанавливать в линиях механической обработки и сборки деталей и узлов. Расход энергии и мощности потребления их на сварку в 4-6 раз меньше, чем, например, при контактной сварке .

Диффузионную сварку от других видов сварки отличает гигиеничность процесса: отсутствие ультрафиолетового излучения, вредных брызг металла, мелкодисперсной пыли, что весьма важно для охраны здоровья работающих.

Опыт многих предприятий, НИИ, КБ показал, что диффузионная сварка успешно конкурирует с другими традиционными видами сварки.

За последнее время взгляды на диффузионную сварку принципиально изменились. Из процесса для соединения материалов, которые трудно или невозможно соединять обычными способами сварки плавлением и пайки, она превратилась в общедоступный процесс соединения как небольших деталей, так и крупных; установлена ее конкурентоспособность с существующими способами сварки плавлением и пайкой.

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные