Термоэлектрический эффект пельтье. Что такое элемент пельтье, его устройство, принцип работы и практическое применение. Кондиционер на элементах Пельтье

Пельтье эффект Пельтье́ эффе́кт

выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье.

ПЕЛЬТЬЕ ЭФФЕКТ

ПЕЛЬТЬЕ́ ЭФФЕ́КТ, для термоэлектрических явлений (см. ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ) , заключается в выделении или поглощении теплоты при прохождении электрического тока через контакт (спай) двух разных проводников. Эффект Пельтье является обратным эффекту Зеебека (см. ЗЕЕБЕКА ЭФФЕКТ) .
Открыт в 1834 г. Ж. Пельтье (см. ПЕЛЬТЬЕ Жан Шарль Атаназ) , который обнаружил, что при прохождении тока через спай двух разных проводников температура спая изменяется. В 1838 г. Э. Х. Ленц (см. ЛЕНЦ Эмилий Христианович) показал, что при достаточно большой силе тока можно либо заморозить, либо довести до кипения каплю воды, нанесенную на спай, изменяя направление тока.
Сущность эффекта Пельтье состоит в том, что при прохождении электрического тока через контакт двух металлов или полупроводников в области их контакта в дополнение к обычному джоулеву теплу выделяется или поглощается дополнительное количество тепла, называемого теплом Пельтье Q п. В отличие от джоулева тепла, которое пропорционально квадрату силы тока, величина Q п пропорциональна первой степени тока.
Q п = П. I . t.
t - время прохождения тока,
I - сила тока.
П - коэффициент Пельтье, коэффициент пропорциональности, зависящий от природы материалов, образующих контакт. Теоретические представления позволяют выразить коэффициент Пельтье через микроскопические характеристики электронов проводимости.
Коэффициент Пельтье П = Т Da, где Т - абсолютная температура, а Da - разность термоэлектрических коэффициентов проводников. От направления тока зависит, выделяется или поглощается тепло Пельтье.
Причина возникновения эффекта заключается в том, что в случае контакта металлов или полупроводников на границе возникает внутренняя контактная разность потенциалов. Это приводит к тому, что потенциальная энергия носителей по обе стороны контакта становится различной, так как средняя энергия носителей тока зависит от их энергетического спектра, концентрации и механизмов их рассеяния и различна в разных проводниках. Так как средняя энергия электронов, участвующих в переносе тока, в разных проводниках различается, в процессе соударений с ионами решетки носители отдают избыток кинетической энергии решетке, и тепло выделяется. Если при переходе через контакт потенциальная энергия носителей уменьшается, то увеличивается их кинетическая энергия и электроны, сталкиваясь с ионами решетки, увеличивают свою энергия до среднего значения, при этом тепло Пельтье поглощается. Таким образом, при переходе электронов через контакт электроны либо передают избыточную энергия атомам, либо пополняют ее за их счет.
При переходе электронов из полупроводника в металл энергия электронов проводимости полупроводника значительно выше уровня Ферми (см. Ферми энергия (см. ФЕРМИ-ЭНЕРГИЯ) ) металла, и электроны отдают свою избыточную энергию. Эффект Пельтье особенно велик у полупроводников, что используется для создания охлаждающих и обогревающих полупроводниковых приборов, в том числе для создания микрохолодильников в холодильных установках.


Энциклопедический словарь . 2009 .

Смотреть что такое "Пельтье эффект" в других словарях:

    Выделение или поглощение теплоты при прохождении электрич. тока I через контакт двух разл. проводников. Выделение теплоты сменяется поглощением при изменении направления тока. Открыт франц. физиком Ж. Пельтье (J. Peltier) в 1834. Кол во теплоты… … Физическая энциклопедия

    Эффект Пельтье процесс выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, силы тока и времени прохождения… … Википедия

    Выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье … Большой Энциклопедический словарь

    Выделение или поглощение тепла при прохождении электрического тока через контакт (спай) двух различных проводников. Выделение тепла сменяется поглощением при изменении направления тока. Открыт Ж. Пельтье в 1834. Количество выделенного или … Большая советская энциклопедия

    Эффект Пельтье термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида … Википедия

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения — градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело — охладить небольшой объем холодильной камеры, другое — помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный — к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Выполнил студент группы АТ-11

Мухарлямов Ильдар

Эффект Пельтье

Вход: электрический ток.

Выход: количество теплоты, температура.

Сущность

При протекании постоянного электрического тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощаются или выделяются, в зависимости от направления тока, тепло. Тепло Пельтье, выделенное или поглощенное в слое, пропорционально полному заряду, прошедшему через спай, или произведению силы тока на время. Коэффициент Пельтье зависит от рода соприкасающихся проводников и от их температур.

р или n ) (см. рис.). Объяснение эффекта Пельтье заключается во взаимодействие электронов проводимости, замедлившихся или ускорившихся в контактном потенциале р-n перехода, с тепловым колебаниями атомов в массив полупроводника. В результате, в зависимости от направления движения электронов и соответственно тока, происходит нагрев () или охлаждение с ) участка полупроводника, непосредственно примыкающего к спаю (р- n или n-p переходу).

Математическое описание



,

Где - тепло Пельтье, Дж

П – коэффициент Пельтье;

q – заряд, прошедший через контакт, Кл;

I - Ток в проводнике, А;

t – время, с.

Тепло Пельтье меняет знак при перемене направления тока. Пределы изменения параметров:

до 1 В – полупроводник;

I –до нескольких ампер;

Q – от 0 до 50 Дж (за 1 сек.)

Коэффициент Пельтье может быть выражен через коэффициент Томсона:

q T,

Где
Томсона;

Применение

Модуль Пельтье Примечателен тем, что при прохождении через него электрического тока представляет собой термонасос, т.е. перекачивает тепло с одной стороны на другую, благодаря чему активно используется в различных системах охлаждения, от холодильников для напитков, до систем охлаждения мощных полупроводниковых лазеров и различных чипов, особенно там, где нужно ускорить процесс забора тепла от нагревающегося элемента. Основные направления практического использования эффекта Пельтье в полупроводниках: получение холода для создания термоэлектрических охлаждающих устройств, подогрев для целей отопления, термостатирование, управление процессом кристаллизации в условиях постоянной температуры.

Для увеличения отношения сигнал/ шум фотоэлектронных умножителей (ФЭУ) предлагается способ охлаждения фотокатодов термоэлектрическими элементами, расположенными внутри вакуумной оболочки ФЭУ (Пат. 3757151 США).

Устройство для отбора газа, в котором отвод конденсата составляет одно целое с холодильником. На внутренней стороне полого конуса закреплены холодные спаи элементов Пельтье и от него ответвляется трубопровод для отбора измерительного газа. Холодильник отличается тем, что в качестве генератора тока, потребляемого элементами Пельтье, предусмотрена батарея термоэлементов, горячие спаи которых находятся в канале дымовых газов, а холодные спаи – во внешнем пространстве (Заявка 1297У02 ФРГ).

Изображение устройства

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

    сравнительно небольшие габариты;

    возможность работы и на охлаждение, и на нагревание системы;

    отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

    низкий КПД модулей;

    необходимость наличия источника тока для их работы;

    большая потребляемая мощность для достижения заметной разности температур и, как следствие, существенное тепло-выделение;

    ограниченные габариты

Контрольные вопросы:

    В чем сущность эффекта Пельтье?

(При протекании постоянного электрического тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощаются или выделяются, в зависимости от направления тока, тепло.)

    От чего зависит коэффициент Пельтье?

(Коэффициент Пельтье зависит от рода соприкасающихся проводников и от их температур.)

    Какие проводники используется в эффекте Пельтье?

Наиболее сильно эффект Пельтье проявляется на контактах полупроводников с различным типом проводимости (р или n )

    Как связан коэффициент Пельтье, с коэффициентом Томсона?

q T,

Где
Томсона;

Т – коэффициент температуры, К.

    Основные применение эффекта?

(Используется в различных системах охлаждения)

Задачи:

    Найти коэффициент Пельтье, зная что ток равный 10 А прошел за 3 секунды и выделил 50 Дж тепла.

    Чему будет равен коэффициент Томсона, если заряд равен 70 Кл, а абсолютная температура равна 300 К. Коэффициент Пельтье равен 1,7 В.

    Сколько выделится тепла в местах контакта разнородных проводников, если коэффициент Пельтье равен 73 мВ, а заряд прошедший через термомодуль равен 40 Кл.

Решение: Qп=П*q=2.92 (Дж).

    Найти время за которое пройдет ток в проводнике зная, что напряжение 120 В, сопротивление 10 Ом. При этом выделяется 1 Дж тепла, а коэффициент Пельтье равен 60 мВ.

Эффект Пельтье состоит в том, что при пропускании тока по цепи, в контактах разнородных проводников в дополнение к джоулеву теплу выделяется или поглощается тепло Пельтье . Количество тепла Пельтье Q п пропорционально заряду It , прошедшему через контакт

где П – коэффициент Пельтье.

Если изменить направление тока, холодный и горячий контакты поменяются местами.

Между эффектами Пельтье и Зеебека существует непосредственная связь: разность температур вызывает в цепи, состоящей из разнородных проводников, электрический ток, а ток, проходящий через такую цепь, создает разность температур контактов. Эта связь выражается уравнением Томсона

Наиболее просто и наглядно механизм эффекта Пельтье можно пояснить, используя цепь металл-n-полупроводник-металл; где контакты являются нейтральными . В этом случае работы выхода из металла и полупроводника равны, отсутствуют изгибы зон и слои обеднения или обогащения. В равновесном состоянии уровни Ферми металла и полупроводника располагаются на одной высоте, а дно зоны проводимости находится выше уровня Ферми металла, поэтому для электронов, переходящих из металла в полупроводник, существует потенциальный барьер высотой – Е фп (рис. 7.12, а ).

а ) б )

Рис. 7.12. Энергетическая диаграмма цепи металл-n-полупроводник – металл :

а – равновесные состояния; б – прохождение тока.

Приложим к цепи разность потенциалов U (рис. 7.12, б ). Эта разность потенциалов будет падать в основном в участке с большим сопротивлением, т.е. в полупроводнике, где произойдет постоянное изменение высоты уровней. В цепи возникает поток электронов, направленный справа налево.

При переходе через правый контакт необходимо увеличение энергии электрона. Эта энергия передается электронам кристаллической решеткой в результате процессов рассеяния, что приводит к уменьшению тепловых колебаний решетки в этой области, т.е. к поглощению тепла. На левом контакте происходит обратный процесс – передача электронами избытка энергии Е пф кристаллической решетке.

Необходимо отметить, что равновесные носители заряда после перехода через границу раздела оказываются неравновесными и становятся равновесными только после обмена энергией с кристаллической решеткой.

Исходя из данных рассуждений, проведем оценку коэффициента Пельтье. В проводимости металла участвуют электроны, находящиеся вблизи уровня Ферми, средняя энергия которых практически равна энергии Ферми. Средняя энергия электронов проводимости в невырожденном полупроводнике

где r – показатель степени в зависимости λ ~E r .

Таким образом, каждый электрон, проходя через контакт, приобретает или теряет энергию, равную


Поделив эту энергию на заряд электрона, получим коэффициент Пельтье

или с учетом (7.80) и (7.73)

Аналогичное соотношение можно получить для контакта металл-p-полупроводник

Здесь N C и N V – эффективные плотности состояний в зоне проводимости и валентной зоне (п. 5.3).

Для контакта металл-металл коэффициент Пельтье можно определять с помощью (7.79)

П 12 =(α 1 -α 2)T , (7.85)

или с учетом выражения для α

где Е ф 1 и Е ф 2 – уровни Ферми в металлах.

Анализ механизма возникновения эффекта показывает, что коэффициент Пельтье для контакта металл-металлимеют существенно меньшую величину, чем в случае контакта металл-полупроводник (см. пп. 7.1, 7.2).

В контакте разнородных полупроводников, напротив, коэффициент Пельтье оказывается значительно больше, что обусловлено более высоким потенциальным барьером на границе p-n-перехода. Кроме того, в такой цепи один из переходов оказывается включенным в прямом направлении, а второй в обратном. В первом случае преобладает рекомбинация электронно-дырочных пар и выделение дополнительного тепла, а во втором происходит генерация пар и соответственно поглощение такого же количества тепла.

Эффект охлаждения контакта при прохождении тока имеет существенное прикладное значение, так как позволяет создавать термоэлектрические холодильники для охлаждения радиоэлектронной аппаратуры и термостабилизаторы для опорных элементов аппаратуры. Выпускаются и различные охлаждающие стойки, используемые в биологии и медицине.

В функциональной теплоэлектронике данный эффект применяется для создания теплоимпульсов – носителей информации.

ПЕЛЬТЬЕ ЭФФЕКТ

ПЕЛЬТЬЕ ЭФФЕКТ

Выделение или теплоты при прохождении электрич. тока I через контакт двух разл. проводников. Выделение теплоты сменяется поглощением при изменении направления тока. Открыт франц. физиком Ж. Пельтье (J. Peltier) в 1834. Кол-во теплоты Qп=ПI, где П - коэффициент Пельтье, равный: П=TDa. Здесь Т - абс. темп-pa, Da-разность термоэлектрич. коэфф. проводников.

П. э. объясняется тем, что ср. носителей тока зависит от их энергетич. спектра, концентрации и механизмов их рассеяния и поэтому в разных проводниках различна. При переходе из одного проводника в другой эл-ны либо передают избыточную энергию атомам, либо пополняют недостаток энергии за их счёт. В первом случае вблизи контакта выделяется, а во втором поглощается Пельтье. При переходе эл-нов из полупроводника в металл энергия эл-нов проводимости ПП значительно выше уровня Ферми металла, и эл-ны отдают свою избыточную энергию. При противоположном направлении тока из металла в ПП могут перейти только те эл-ны, энергия к-рых выше дна зоны проводимости ПП. Тепловое равновесие в металле при этом нарушается и восстанавливается за счёт тепловых колебаний крист. решётки. При этом поглощается теплота Пельтье. На контакте двух ПП или двух металлов также выделяется (или поглощается) теплота Пельтье вследствие того, что ср. энергия носителей заряда по обе стороны контакта различна.

П. э. используется для охлаждения в холодильных установках и в нек-рых электронных приборах.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЕЛЬТЬЕ ЭФФЕКТ

Выделение или поглощениетепла на контакте двух разнородных проводников в зависимости от направленияэлектрич. тока, текущего через контакт. Открыт Ж. Пельтье (J. Peltier)в 1834. Мощность тепловыделения Q = П 12 j , где j - плотность тока, П 12 = П 1 - П 2 (П 1 ,П 2 - абс. коэф. Пельтье контактирующих материалов, являющихсяхарактеристиками этих материалов). Причина возникновения П. э. заключаетсяв том, что ср. энергия носителей заряда (для определённости электронов),участвующих в электропроводности, в разл. проводниках различна, т. к. зависитот их энергетич. спектра, концентрации и механизма рассеяния (см. Рассеяниеносителей заряда). При переходе из одного проводника в другой электронылибо передают избыточную энергию решётке, либо пополняют недостаток энергииза её счёт (в зависимости от направления тока). В первом случае вблизиконтакта выделяется, а во втором - поглощается т. н. теплота Пельтье. Напр.,на контакте полупроводник - металл (рис.) энергия электронов, переходящихиз полупроводника n -типа в металл (левый контакт), значительно превышаетэнергию Ферми Поэтому они нарушают в металле. Равновесие восстанавливаетсяв результате столкновений, при к-рых электроны термализуются, отдавая избыточнуюэнергию кристаллич. решётке. В полупроводник из металла (правый контакт)могут перейти только самые энергичные электроны, вследствие этого электронныйгаз в металле охлаждается. На восстановление равновесного распределениярасходуется энергия колебаний решётки.

Эффект Пельтье на контактах полупроводник n -типа -металл;- уровень Ферми;- дно зоны проводимости полупроводника:- потолок валентной зоны.

На контакте двух полупроводников или двухметаллов также выделяется (или поглощается) теплота Пельтье, вследствиетого, что ср. энергия участвующих в токе носителей заряда по обе стороныконтакта различна.
Выражение для абс. коэф. Пельтье П (носителизаряда - электроны) имеет вид

где . - кинетич. энергия и электронов, f 1 - неравновеснаячасть ф-ции распределения электронов,- плотность состояний. Как видно из (1), коэф. П представляет собойотклонение ср. энергии носителей в потоке от энергии Ферми отнесённое к единице заряда. Для определения П необходимо знать ф-цию и найти т. е. решить кинетич. ур-ние. В случае параболич. закона дисперсии электроновпроводимости ( р)(р - квазиимпульс) и степенной зависимости длины свободного пробега . от энергии при отсутствии вырождения в полупроводнике коэф. П определяетсяф-лой

Здесь - параметр рассеяния, Т - абс. темп-pa (см. Рассеяние носителейзаряда в твёрдом теле);отсчитывается от дна зоны проводимости.
Как видно из (2), еП но абс. величинеможет достигать десятков kT. С увеличением концентрации электроновв вырожденном проводнике или уменьшением Т величина П уменьшаетсяи при

Коэф. Пельтье связан с коэф. термоэдс т. П= Т.

Это позволяет использовать для оценки Презультаты микроскопич. теории для Коэф. Пельтье, являющийся важной техн. характеристикой материалов, какправило, не измеряется, а вычисляется по измерение к-рого более просто.
П. э. используется в термоэлектрич. холодильникахи термостатах, а также для управления процессом кристаллизации за счётвыделения или поглощения тепла на границе жидкой и твёрдой фаз при пропусканииэлектрич. тока.

Лит.: Ансельм А. И., Введение втеорию полупроводников, 2 изд., М., 1978; Аскеров Б. М., Электронные явленияпереноса в полупроводниках, М., 1985; Зеегер К., Физика полупроводников, 3. М. Дашевский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПЕЛЬТЬЕ ЭФФЕКТ" в других словарях:

    Выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье. * * * ПЕЛЬТЬЕ ЭФФЕКТ ПЕЛЬТЬЕ ЭФФЕКТ … Энциклопедический словарь

    Эффект Пельтье процесс выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, силы тока и времени прохождения… … Википедия

    Выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье … Большой Энциклопедический словарь

    Выделение или поглощение тепла при прохождении электрического тока через контакт (спай) двух различных проводников. Выделение тепла сменяется поглощением при изменении направления тока. Открыт Ж. Пельтье в 1834. Количество выделенного или …

    Эффект Пельтье термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида … Википедия

    Эффект Зеебека явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах. Эффект Зеебека также иногда называют… … Википедия

    Пельтье (Peltier) Жан Шарль Атаназ (22.2.1785, Ам, Сомма, ‒ 27.10.1845, Париж), французский физик и метеоролог. Работал часовщиком фирмы А. Л. Бреге. Получив наследство (1815), посвятил себя науке. Научные работы по термоэлектричеству,… … Большая советская энциклопедия

    Эффект Томсона одно из термоэлектрических явлений, заключающееся в том, что в однородном неравномерно нагретом проводнике с постоянным током, дополнительно к теплоте, выделяемой в соответствии с законом Джоуля Ленца, в объёме… … Википедия

    Жан Шарль Пельтье фр. Jean Charles Peltier Жан Пельтье Дата рождения … Википедия

    Термоэлектрические явления … Википедия

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные