Биофильтры: понятие, классификация, расчет. Гончарук Е.И. Коммунальная гигиена - файл n1.doc

Что такое биологический фильтр? Он имеет резервуар специальной формы, в котором очищаются сточные воды с применением биологических материалов — оболочка из разных микроорганизмов.

Во время очистительных работ происходит постоянная циркуляция воздуха благодаря температурной разнице атмосферы и очищаемой воды. Вентиляция является обязательным условием поддержания жизни – обеспечение микроорганизмов кислородом.

Классификация биофильтров

В биологических фильтрах предусмотрены разные материалы для загрузки. Выделяют:

  • Биофильтры с объемной нагрузкой. Они содержат горный щебень, керамзит, гальку и т.д.
  • Фильтры плоской нагрузки. Используются прочные пластмассы, работающие в температурном диапазоне от 6 до 30 градусов.

По используемой технологической схемы выделяют:

  • Фильтры с двумя ступенями очистки, которые выдают высокоочищенную воду. Их применяют при ограничении высоты устройства или при неблагоприятном климате.
  • Биофильтры с одной ступенью очистки.

По степени очистки биофильтры бывают:

  • с полной очисткой;
  • с неполной очисткой.

В зависимости от способа подачи воздуха биофильтры делятся:

Различают два режима работы биологических фильтров:

  • рециркуляционны — высококонцентрированная вода подается небольшими порциями для более эффективной очистки;
  • без рециркуляции – при низком загрязнении воды.

В зависимости от пропускной способности классифицируются на:

  • капельные — с малой пропускной способностью;
  • высоконагружаемые.

Биофильтры с объемной нагрузкой

Их принято разделять на:

  1. Капельные, которые характеризуются малой производительностью. Зернистость тела загрузки будет 20-30 миллиметров при двухметровой высоте слоя.
  2. Высоконагружаемые с размером загрузочного материала 40-60 миллиметров и четырехметровый слой.
  3. Башенные биофильтры имеют большую высоту – 16 метров, а зернистостью 40-60 миллиметров.

Биофильтры с плоской загрузкой

  1. Жесткая нагрузка обеспечивается кольцами, частями труб и подобными элементами. В бак засыпают крошку из металла, керамики или пластмассы. Их плотность доходить до 600 кг/м 3 , пористость материалов от 70%. Очищающий слой доходит до шести метров.
  2. Жесткая нагрузка с блочной или решетчатой нагрузкой. Блоки изготавливают из асбестовых листов (плотность до 250 кг/м 3 , пористость от 80%, шесть метров загрузки) или некоторых разновидностей пластмасс (плотность от 40 до 100 кг/м 3 , пористость от 90%, фильтрующий слой до 16 метров).
  3. Рулонная или мягкая нагрузка создается сеткой из металла, синтетическими тканями, пленкой из пластмассы. Загрузку выкладывают рулонами или закрепляют на каркас. Плотность до 60 кг/м3, пористость от 95% при высоте загрузки до 8 метров.
  4. Биофильтры для погружения – резервуары с вогнутым днищем. Диски из пластмассы, металла или асбеста монтируются выше уровня очищаемых вод. Диски расположены 10-20 миллиметров друг от друга, их диаметр – 06-3 метра. Вал вращается с частотой до 40 мин -1 .

Засыпная и мягкая нагрузка используется при максимальном расходе 10 000 м 3 /сутки, блочная нагрузка – 50 000 м 3 /сутки. Погружные биофильтры эффективны при низких нагрузках.

Схема работы фильтра

Подача водной массы осуществляется капельным или струйным методом. Воздух проходит через дренаж фильтра или забирается с поверхности. Предварительно очищенная сточная вода с невысокой концентрацией загрязнений сама течет в распределитель, который порциями подает ее на поверхность загрузочной массы. Далее вода идет в систему дренажа, а оттуда на водные лотки за границами биологического фильтра. Во втором отстойнике удаляется биопленка.

Капельные биофильтры характеризуются низкой органической нагрузкой. Что бы вовремя очистить тело фильтра от мертвой биопленки, используют гидравлическую нагрузку.

Должно быть обеспечено равномерное орошение всей загрузки биофильтра. Это необходимо для исключения возникновения повышенной или пониженной гидравлической нагрузки.

Капельные фильтры почти невозможно регулировать под изменения внешних условий. При эксплуатации следят за показателями загрязненности и состоянием биофильтров. Очистка загрузки имеет высокую стоимость – используют полную ее замену. В биофильтр должна поступать сточная вода с количеством взвешенных частиц менее 100 мг/л.

При эксплуатации важным является аэрация фильтра. Концентрация кислорода не должна снижаться за 2 мг/л. Необходимо обеспечить периодическую очистку полости под дренажем и над днищем.

Капельный биологические фильтры плохо переносит зимой ветер. Для эффективной работы предусматривают противоветровую защиту. Неоднородная нагрузка приводит к заболачиванию фильтра, которая ликвидируется заменой загрузки. Работу нарушают и посторонние предметы в загрузочной массе и дозирующих баках.

Высоконагружаемые биофильтры

Этот тип фильтров имеет повышенный воздухообмен и, соответственно, окислительную способность. Обеспечивается повышенный обмен воздуха крупной фракцией загрузки и повышенной водонагрузки.

Очищаемые воды двигаются с большой скоростью и выносят трудноокисляемые вещества и отработанную биопленку. Кислород расходуется на оставшиеся загрязнения.

Высоконагружаемые биофильтры имеют высокий загрузочный слой, повышенную зернистость дренажа и днище особой формы для обеспечения искусственной циркуляции воздуха.

Промывка фильтра будет происходить только условиях постоянного беспрерывного и высокой подаче воды.

Высота массы загрузки прямо пропорциональна эффективности биофильтра.

В состав биологических фильтров могут входить:

  • тело фильтра – фильтрующая загрузка, которая расположена в резервуаре, доступном для проникновения воды. Наполнители (пластмасса, шлак, щебень, керамзит и т.д.) должны иметь низкую плотность и повышенную поверхностную площадь;
  • устройство для распределения воды, позволяющее равномерно орошать фильтрующую загрузку грязной водой;
  • дренаж;
  • устройство распределения воздуха – подает кислород для окислительных реакций.

Окислительные процессы в биофильтрах схожи с орошением полей или как в сооружениях биологической очистки, но интенсивнее.



Схема работы биофильтра

Загрузочная масса очищает воду от нерастворенных примесей, которые остались после пройденных отстойников. Биопленка сорбирует растворенную органику. Микроорганизмы в биопленки живут за счет окисления органических веществ. Так же часть органики идет на увеличении биомассы. Происходит два эффективных действия: уничтожение ненужной органики из воды и увеличения биологической пленки. Поток сточной воды уносит с собой омертвевшую часть пленки. Кислород подается естественным и искусственным путем с помощью вентиляции.

Расчет биофильтров

Расчет производится для поиска эффективной толщины загрузочной массы и характеристик водораспределительного устройства, фракции дренажа и диаметра лотков, отводящих воду.

Эффективный размер загрузочной массы рассчитывают по окислительной мощности – ОМ. ОМ – это масса необходимого кислорода в сутки. На нее влияет температура воды и окружающей среды, материала загрузочной массы, типа загрязнения, способа воздухообмена и т.д. Если за год средняя температура менее 3 градусов, то биофильтр переносят в более теплое помещение с возможностью обогрева и пятикратной подачей свежего.

Часто используют следующий алгоритм:

  1. Определяют коэффициент К как произведение БПК20 входящей и выходящей воды.
  2. Из таблиц определить высоту фильтра и допустимую гидравлическую нагрузку, зависящая от среднезимней температуры окружающей среды и К.
  3. Общая площадь определяется делением расхода входящей воды на гидравлическую нагрузку.

Высоконагружаемые биофильтры

Для них существует точная методика расчета:

  1. Определяется допустимая концентрация загрязнения входящей воды: табличный коэффициент К умножается на БПК вышедшей воды.
  2. Рассчитывается коэффициент рециркуляции по специальной формуле. Он равен частному двух разностей: БПК поступающей сточной воды минус ее допустимая концентрация и допустимая концентрация минус БПК очищенной воды.
  3. Для определения площади фильтра берется произведение объема среднесуточной подачи воды, увеличенное на 1 отношение рециркуляционного расхода к расходу сточной воды и коэффициента с пункта 2. Все нежно разделить на допустимую нагрузку и температуру.

Существуют дополнительные методы расчета биологических фильтров, которые используют сложные формулы и дают более точные результаты.



Схема вентиляции биофильтра

Как уже упоминалось выше, биофильтры имеют два способа подачи кислорода: искусственный и естественны. Вид вентиляции зависит от климатических условий и типа фильтра.

Для высоконагруженных биофильтров используют вентиляторы с низким давлением — ЭВР, ЦЧ. Аэрофильтры нуждаются в искусственной вентиляции. При монтаже биофильтра в закрытом пространстве, так же предусматривают принудительную подачу воздуха в него.

Обеспечивают постоянную циркуляцию воздуха, так как перерывы могут поднять температуру до 60 градусов и вызвать плохие запах от разложения отработанной биопленки.

Биофильтр эффективно работает при температуре выше 6 градусов. Если вода будет меньшей температуры, то следует предусмотреть подогрев подаваемой воды.

Что бы в зимнее время фильтр не переохлаждался, устанавливают противоветровую защиту в виде купольного сооружения и снижают коэффициент неравномерности подачи сточных вод. Так же вводят ограничение по подаче холодного воздуха: на квадратный метр за час должно подаваться только 20 кубических метров. В вентиляционные решетки вставляют жалюзи, экраны из тканевых материалов.

Толщина биопленки оказывает влияние на равновесие в фильтре. Большая толщина может привести к прекращению потребления кислорода и начнется гниение. Наиболее распространено в капельных фильтрах.

Ранее считалось, что естественная подача кислорода происходит только благодаря разности температур. Сегодня доказано, что на естественную вентиляцию влияют диффузные процессы во время окислительно-восстановительных реакций.

Различают очистку в естественных и искусственных условиях. К методам биологической очистки сточных вод в естественных условиях относятся: почвенная очистка, биологические пруды, биоплато. Методы биологической очистки сточных вод в искусственных условиях: биофильтры, аэротенки, окситенки, погружные биофильтры, биотенки-биофильтры, анаэробные биофильтры.

Методы биологической очистки сточных вод в естественных условиях

Сооружения почвенной очистки сточных вод по мощности разделяют на малые (с расчетной пропускной способностью 0,5-700 м3/сут), средние (1400-80000 м3/сут) и крупные (100000-280000 м3/сут). К таким сооружениям относятся площадки подземной фильтрации, фильтрующие колодцы, песчано-гравийные фильтры, фильтрующие траншеи с естественным или искусственным слоем грунта, а также коммунальные поля орошения, земледельческие поля орошения и поля наземной фильтрации. Применяют несколько видов систем орошения: сплошной залив, залив по бороздам и полосам, дождевание и подпочвенное орошение. Считают, что из всех способов орошения подпочвенное наиболее удовлетворяет эпидемиологическим, санитарно-техническим, агроэкономическим, эстетическим и водохозяйственным требованиям.

К сожалению, орошение сточными водами не позволяет достаточно эффективно очищать их от органических веществ и не исключает возможность загрязнения почвы и выращиваемых культур патогенными бактериями и яйцами гельминтов. В связи с этим почвенная очистка по масштабам применимости значительно уступает методам естественной очистки в искусственных сооружениях и методам искусственной биологической очистки.

Биологические пруды – искусственно созданные водоемы, в которых для очистки сточных вод используются естественные процессы. Эти пруды могут применяться как для очистки, так и для глубокой очистки сточных вод, прошедших биологическую очистку. Это последнее назначение биологических прудов имеет преимущественное распространение.

Различают пруды с естественной и искусственной аэрацией. Аэрация способствует улучшению деятельности микрофлоры, а также прямому окислению органики за счет кислорода воздуха. Конструкция биологического пруда с искусственной аэрацией для очистки и доочистки сточных вод пропускной способностью 1400 м3/сут приведена на рис. 61.

Рис. 61. Аэрируемые биологические пруды для очистки и доочистки сточных вод пропускной способностью 1400 м3/сут:

Потоки: І – сточная вода, поступающая на первую ступень очистки; П – то же, поступающая на П и Ш ступени очистки; Ш – сточная вода после биологической очистки; ІУ – то же, после доочистки; 1, 2, 3 – аэрируемый биологический пруд соответственно І, П, Ш ступени; 4, 5 – биологический пруд соответственно І и П ступени с естественной аэрацией; 6 – контактная емкость; 7 – аэраторы.

Кроме окислительного действия микрофлоры и кислорода воздуха значительную активность в очистке принимает высшая водная растительность, которая своей корневой системой сорбирует и поглощает органические и неорганические вещества-загрязнители. Кроме этого водная растительность играет существенную роль в окислительных процессах, а также способствует снижению концентрации биогенных элементов и регулирует кислородный режим водоема.

Методы биологической очистки сточных вод в искусственных условиях

Всю совокупность сооружений биологической очистки разделяют на три группы по признаку расположения в них активной биомассы (или активного ила): 1)когда активная биомасса закреплена на неподвижном материале, а сточная вода тонким слоем скользит по материалу загрузки;

2)когда активная биомасса находится в воде в свободном (взвешенном состоянии);

3)когда сочетаются оба варианта расположения биомассы.

Первую группу сооружений составляют биофильтры, вторую – аэротенки, циркуляционные окислительные каналы, окситенки, третью – погружные биофильтры, биотенки, аэротенки с заполнителями.

Биофильтры. Важнейшей составной частью биофильтра является загрузочный материал (рис. 62). По его типу все биофильтры делятся на две категории: с объемной и плоской загрузкой. Строго говоря, плоская загрузка тоже объемная, хотя занимаемый ею объем невелик. Отсутствует принципиальная разница между биофильтрами, загруженными шлаком, гравием, керамзитом, пластмассовыми материалами. Важной составляющей любого биофильтра является создание условий для закрепления биомассы на его разветвленной поверхности и образование биопленки, которая способствует интенсивному окислению содержащихся в сточной воде органических веществ.


Рис. 62. Типы загрузки биофильтров:

а – кольца Рашига; б – кольца с перегородкой; в – кольца с крестообразной перегородкой; г – кольца Палля; д – седла Берля; е – седла «Инталокс»; ж – полые цилиндры с отверстиями; з – жесткая блочная загрузка; и – мягкая загрузка.

Биофильтры классифицируются на капельные (рис. 63) и с объемной загрузкой (рис. 64). Биофильтры с плоской загрузкой делятся по категориям по типу загрузки: с жесткой засыпной, жесткой блочной и мягкой.



Рис. 63. Капельный биофильтр:

1 – дозирующие баки сточной воды; 2 – спринклеры; 3 – железобетонная стенка; 4 – загрузка биофильтра; 5 – подача сточной воды; 6 – отводящий лоток.

Рис. 64. Высоконагружаемый биофильтр с реактивным оросителем.

Аэротенки. Их можно классифицировать по следующим признакам.

По структуре потока – аэротенки-вытеснители, аэротенки-смесители и аэротенки с рассредоточенным впуском сточной жидкости, так называемые аэротенки промежуточного типа.

По способу регенерации активного или – аэротенки с отдельно стоящими регенераторами ила, аэротенки, совмещенные с регенераторами.

По нагрузке на активный ил – высоконагружаемые, обычные и низконагружаемые.

По числу ступеней – одно-, двух- и многоступенчатые.

По конструктивным признакам – прямоугольные, круглые, комбинированные, противоточные, шахтные, фильтротенки, флототенки и др.

По типу систем аэрации – с пневматической, механической, комбинированной гидродинамической или пневмомеханической.

Схема работы аэротенков приведена на рис. 65.


Рис. 65. Схемы аэротенков:

а – вытеснители; б – смесители; в – с рассредоточенным выпуском воды; г – типа АНР (по К.Бойте); д – с регенераторами; е – ячеистого типа; І – сточная вода; П – активный ил; Ш – иловая смесь; 1 – аэротенк; 2 – вторичный отстойник; 3 - регенератор.

Период аэрации в аэротенке, работающем по принципу смесителя, определяется по формуле:

t = (L a – L t)/ρ a (1 – S), (92)

S – зольность или, доля единицы.

Окситенки. Это сооружения биологической очистки, в которых вместо воздуха используется технический кислород или воздух, обогащенный кислородом. Конструктивно окситенк выполнен в виде резервуара круглой в плане формы с цилиндрической перегородкой, отделяющей зону аэрации от зоны илоотделения (рис. 66). В средней части цилиндрической перегородки устроены окна для перепуска иловой смеси из зоны аэрации в илоотделитель; в нижней части – для поступления возвратного ила в зону аэрации. Илоотделитель работает со взвешенным слоем активного ила, уровень которого стабилизируется автоматически путем сброса избыточного ила через трубу.

Рис. 66. Конструкция окситенка:

1 – продувочный трубопровод; 2, 5 – задвижки с электроприводом; 3 - электродвигатель; 4 – турбоаэратор; 6 – герметичное перекрытие; 7 – трубопровод для подачи кислорода; 8 – вертикальные стержни; 9 – сборный лоток; 10 – трубопровод для сброса избыточного ила; 11 – резервуар; 12 – окно для перепуска иловой смеси из зоны аэрации в илоотделитель; 13 – цилиндрическая перегородка; 14 – скребок; 15 – окно для перепуска возвратного ила в зону аэрации; 16 – зона аэрации; 17 – трубопровод для подачи сточной воды в зону аэрации; 18 - илоотделитель; 19 – трубопровод для выпуска очищенной воды.

Сточная вода поступает в зону аэрации по трубе. Под воздействием скоростного напора, развиваемого турбоаэратором, иловая смесь через окна поступает в илоотделитель. Благодаря направляющим щиткам жидкость в нем медленно движется по окружности. В сочетании с перемешивающим устройством все это значительно интенсифицирует процесс отделения и уплотнения ила. Очищенная вода проходит сквозь слой взвешенного активного ила, дочищается от взвешенных и растворенных органических веществ, поступает в сборный лоток и отводится по трубке. Возвратный активный ил опускается по спирали вниз и через окна поступает в камеру аэрации. Окситенк оборудуется системой автоматики, обеспечивающей подачу кислорода в зону аэрации в соответствии со скоростью его потребления.

Расчет времени пребывания сточной воды в окситенке (t) выполняют по формуле, учитывающей снижение удельной скорости окисления при повышении концентрации ила:

t = (L a – L t)/ρ a k н (1 – S), (93)

где L a и L t – БПК соответственно поступающей и очищенной сточной воды;

а – количество возвратного ила, выраженное в долях единицы от расхода воды;

ρ – скорость окисления загрязнений, мг БПК на 1 г беззольного вещества или в 1 ч;

S – зольность или, доля единицы;

k н – коэффициент, зависящий от количества возвратного ила (при а = 1 г/л

k н = 1,8, при а = 5 г/л k н = 0,7, при а = 10, k н = 0,4, при а = 15 г/л k н = 0,3).

Погружные биофильтры состоят из вращающегося вала с насажденными на нем дисками и резервуара со сточной водой, в которую диски погружаются на 1/3-1/2 своего диаметра. Диски изготовляются их легкого материала и располагаются на расстоянии 10-20 см друг от друга. Число пластин на валу от 20 до 200. Диаметр дисков 0,5-3 м. Частота вращения вала около 1 оборота в минуту. Сточная вода протекает по резервуару с различной скоростью в зависимости от требуемой степени очистки. На дисках нарастает биопленка толщиной до 4 мм. Попеременно погружаясь в воду и выходя из нее, биопленка извлекает загрязнения и окисляет их с помощью кислорода, который она получает непосредственно из атмосферы. Отмершая часть биопленки попадает в воду, выносится ею во вторичный отстойник. Кроме биопленки в очистке принимает участие и активный ил, развивающийся в резервуаре из-за продолжительного нахождения жидкости в нем. Схема погружного биофильтра приведена на рис. 67, а на рис. 68 приведена схема биотенка-биофильтра.


Рис. 67. Схема установки дисков в погружном биофильтре:

1 – камера впуска сточных вод; 2 – лоток; 3 – биодиски; 4 – илопровод; 5 - отстойник; 6 – камера выпуска обработанных сточных вод; 7 – двигатель-редуктор биодиска; 8 – трубопровод к иловой насосной станции.

Рис. 68. Схема биотенка:

1 – корпус; 2 – элементы загрузки.

К атегория: Очистка сточных вод

Биофильтры

Биологические фильтры представляют собой сооружения, в которых процесс биологической очистки сточных вод протекает в искусственно созданных условиях. Биологические фильтры бывают периодического (контактные) и непрерывного действия. Контактные биофильтры вследствие их малой пропускной способности и высокой стоимости в настоящее время не применяют. Биофильтры непрерывного действия по пропускной способности могут быть подразделены на капельные и вы-соконагружаемые, по способу подачи в них воздуха и те и другие могут быть с естественной и с искуственной вентиляцией (аэрофильтры).

Капельные биофильтры. Капельные- непрерывно действующие биофильтры в зарубежной практике иногда называют оросительными или перколяторными.

Непрерывно действующий капельный биофильтр состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. Биофильтры могут быть в плане круглые, прямоугольные, квадратные. Поверхность капельного биофильтра орошают сверху равномерно через небольшие промежутки времени; при этом вода подается в виде капель или струй (капельные или оросительные) либо в виде тонкого слоя воды (перколяторные).

В отечественной практике в капельные биофильтры воздух поступает естественным путем - сверху через открытую поверхность биофильтра и снизу через дренаж. Они имеют низкие нагрузки по воде (не более 0,5-1 м3 сточной воды на 1 м3 загрузочного материала), а также меньший по сравнению с высоконагружаемыми биофильтрами размер фракций загрузки (20-40 мм).

Проходя через фильтрующую загрузку биофильтра, загрязненная вода вследствие адсорбции оставляет в ней взвешенные и коллоидные органические вещества, не осевшие в первичных отстойниках, которые создают биопленку, густо заселенную микроорганизмами. Микроорганизмы биопленки окисляют органические вещества и получают необходимую для своей жизнедеятельности энергию. Часть растворенных органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества, а в теле биофильтра увеличивается масса активной биологической пленки. Отработавшая и омертвевшая пленка смывается протекающей сточной водой и выносится из биофильтра.

Биофильтр (рис. 1) работает следующим образом. Осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает в распределительные устройства, которые периодически напускают воду на поверхность биофильтра. Профильтрованная через толщу биофильтра вода проходит через отверстия в дырчатом дне (дренаже), поступает на сплошное непроницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых задерживается выносимая биопленка, отделяемая от очищенной сточной воды. Эффект очистки нормально работающих биофильтров подобного типа очень высок и может достигать по БПКго 90 % и более.

При расчете биофильтра определяют необходимый объем загрузочного материала для очистки поступающей сточной воды, а также рассчитывают распределительные устройства для орошения загрузки водой, дренаж и лотки, собирающие осветленную воду. В отечественной практике проектирования капельных биофильтров объем фильтрующей загрузки определяют по окислительной мощности биофильтра. Окислительная мощность- количество граммов кислорода, которое может быть получено с 1 м3 загрузочного материала в сутки для снижения биохимической потребности сточной воды. Окислительная мощность биофильтра колеблется в широких пределах, так как ее величина зависит от многих факторов: температуры сточной воды и наружного воздуха, свойств поступающей жидкости, материала загрузки, способа подачи воздуха и пр.

Рис. 1. Биофильтр 1 - распределительный слой; 2 - поддерживающий слой; 3 - бетон; 4 - дренаж; 5 - сборный лоток; 6 - подача сточной жидкости

Высоконагружаемые биофильтры. В 1929 г. в СССР и в 1936 г. в США появились новые типы биофильтров, которые в отечественной практике получили название аэрофильтров, а в зарубежной практике - высоконагружа-емых биофильтров. В СССР аэрофильтры были предложены профессорами Н. А. Базякиной и С. Н. Строгановым. Они впервые были построены в 1929 г. на Кожуховской станции биофильтрации и имеют явное преимущество по сравнению с капельными, поэтому получили широкое распространение. Высоконагружаемые биофильтры отличаются от капельных как конструкцией, так и эксплуатационными особенностями.

Конструктивными отличиями являются:
1) увеличение крупности зерен загрузочного материала (40-70 мм по всей высоте загрузки); материалом может служить щебень твердых пород;
2) искусственная продувка материала загрузки воздухом, а в связи с этим изменение конструкции днища и дренажа;
3) увеличение (при необходимости) высоты слоя фильтрующей загрузки.

К эксплуатационным особенностям относятся:
1) обязательное орошение всей поверхности биофильтров поступающей водой и по возможности уменьшение длительности перерывов в подаче воды на поверхность;
2) повышение нагрузки по воде на 1 м2 поверхности в целях создания естественных условий для самопроизвольной промывки фильтров;
3) разбавление в необходимых случаях поступающего стока очищенной сточной водой, т. е. введение рециркуляции.

Исследованиями установлено, что биофильтры высокой нагрузки могут обеспечить любую пропускную способность и любую степень очистки в зависимости от тех или иных конструктивных особенностей и режима их эксплуатации, которые заданы.

Высоконагружаемые биофильтры следует классифицировать по таким признакам.

1. По принципу действия - работающие с полной или неполной биологической очисткой. Первоначально биофильтры подобного типа проектировали только на неполную биологическую очистку. Предполагалось, что фильтры могут иметь повышенную пропускную способность только в том случае, если они снимают легкоокис-ляемые загрязнения, находящиеся в сточной воде, и выходящий сток имеет ВПК выше 20 мг/л; кроме того, процесс нитрификации в биофильтрах не происходит. Однако впоследствии исследованиями2 удалось установить, что высоконагружаемые биофильтры могут обеспечивать весьма высокий эффект очистки.

2. По способу подачи воздуха - с естественной и искусственной подачей воздуха; во втором случае они часто носят название аэрофильтров. Если высота загрузки в биофильтрах небольшая (1,5-2 м), то искусственная подача воздуха не обязательна; при большой высоте загрузки необходимо предусматривать искусственное нагнетание воздуха.

Рис. 2. Схема одноступенчатой работы биофильтров с рециркуляцией

3. По режиму работы - с рециркуляцией и без рециркуляции. Если концентрация поступающего загрязненного стока на биофильтр невысокая и расход воды на биофильтр достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При сильно загрязненном стоке рециркуляция желательна, в некоторых случаях обязательна.

4. По числу ступеней - одноступенчатые (рис. 2) и двухступенчатые. Двухступенчатую работу биофильтра предусматривают в том случае, если необходима полная биологическая очистка и биофильтры I ступени нельзя запроектировать достаточной высоты. В этом случае в I ступени будет осуществляться неполная очистка стока, а во II ступени - его доочистка.

5. По высоте - низкие до 2 м, высокие от 2 м и выше.

6. По конструктивным особенностям загрузки - с объемной загрузкой (гравий, щебень, керамзит и пр.) и с плоскостной загрузкой.

Биофильтры с плоскостной загрузкой подразделяются: с жесткой загрузкой в виде колец или обрезков труб из керамических, пластмассовых и металлических засыпных элементов; с жесткой загрузкой в виде решеток или блоков из плоских и гофрированных листов; с мягкой или рулонной загрузкой из металлических сеток, пластмассовых пленок, синтетических тканей, которые крепятся на каркасах или укладываются в виде рулонов.

Высокие биофильтры предназначены для полной биологической очистки, низкие - для частичной.

Биофильтры с пластмассовой загрузкой. Отличительной особенностью этих фильтров является то, что они работают на загрузке из пластмассового материала в виде решеток, пакетов или пластмассовых колец. Благоприятные условия для обтекания воздухом материала загрузки фильтра обеспечивают более высокую пропускную способность, чем биофильтров других типов. Нагрузка в них для городских сточных вод (по исследованиям кафедры канализации МИСИ) может быть доведена до 10 м3 воды на 1 м3 загрузки материала. В качестве загрузочного материала применяют пластмассовые блоки из поливинилхлорида, полистирола и других жестких пластмасс, а также пластмассовую насадку из собранных в блоки или засыпаемых в биофильтр коротко нарезанных перфорированных труб. Такие биофильтры проектируются круглыми или многоугольными в плане высотой 3-4 м. Обычно их располагают в отапливаемом помещении.

Конструкции биофильтров. В отечественной практике наибольшее распространение получили биофильтры прямоугольной или круглой формы. На рис. 3 представлен типовой биологический фильтр прямоугольной формы из сборного железобетона, разработанный Союз-водоканалпроектом. На бетонном водонепроницаемом основании устроен дренаж, который отводит воду и обеспечивает благоприятные условия для аэрации загрузки биофильтра. Чаще всего дренаж выполняют из железобетонных плит, укладываемых на бетонные опоры.

Рис. 3. Типовой биологический фильтр прямоугольной формы со спринклерным распределением воды 1 - сборные блоки; 2 и 3 - балки и плиты перекрытия; 4 - распределительная камера; 5 - площадка обслуживания

Рис. 4. Высоконагружаемый биофильтр из сборного железобетона 1 - бутовый фундамент; 2 -плиты дренажного перекрытия; 3 - сборные элементы стенок; 4 - сборная плита; б - вентиляционные трубы; 6 - колосниковые плиты

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микробиальной пленки. В то же время загрузочный материал должен быть достаточно пористым, так как это способствует хорошей аэрации загрузки фильтра и в значительной мере предотвращает заиление фильтра. Для загрузки биофильтров рекомендуют применять щебень, гальку прочных горных пород и керамзит.

Высоконагружаемые биофильтры при предварительной обработке частично очищенной сточной жидкости в аэротенках и биокоатуляторах, а также высоконагружаемые биофильтры II ступени и капельные биофильтры загружают материалом крупностью 30 - 50 мм. Нижний поддерживающий слой высотой 0,2 м во всех случаях имеет крупность загрузки 60-100 мм.

Высоконагружаемые биофильтры устраивают из сборного железобетона (рис. 4). Биофильтр представляет собой цилиндрический резервуар диаметром 17 м, высотой 2,3 м. Стенки биофильтра выполнены из 48 вертикально расположенных сборных цилиндрических элементов, днище - из монолитного бетона, дренажное перекрытие - из сборных колосниковых решеток.

Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение осуществляется специальными распределительными устройствами, которые бывают неподвижными и подвижными. К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным - качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители). В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение g помощью подвижных оросителей.

Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров. Спринклеры (сприн-клерные головки) представляют собой насадки, надетые на концы вертикальных отростков, ответвляющихся от распределительных труб, проложенных на поверхности или в самом биофильтре. Отверстия спринклерных головок делают небольшого диаметра 18-32 мм. На рис. 5 показан один из типов насадок, применяемых в отечественной практике. Во избежание коррозии спринклеры изготовляют из бронзы или латуни.

Рис. 5. Насадка для орошения поверхности биофильтра 1 - отражательный конус; 2 - головка

Рис. 6. Реактивный ороситель

Для лучшего распределения сточной воды по поверхности биофильтра и улучшения его работы сточная вода должна подаваться в спринклерную сеть периодически с небольшими интервалами. Для этой цели предусмотрен дозирующий бак, автоматически подающий воду в спринклерную сеть при его опорожнении.

Распределительную спринклерную сеть целесообразно проектировать так, чтобы каждую секцйю биофильтра обслуживал отдельный дозирующий бак. Существуют различные конструкции автоматически действующих аппаратов (баков), например автоматы с вращающимися рукавами, цилиндрическим затвором и др. Наибольшее распространение получил дозирующий бак с сифоном, который не имеет движущихся частей.

При расчете распределительной системы определяют расход воды из разбрызгивателя (спринклера), необходимое их число, рассчитывают разводящую сеть, объем и время работы дозирующего бака. Для нормальной работы биофильтры должны быть обеспечены необходимым количеством воздуха. В капельных биофильтрах создается естественная продувка (вентиляция) за счет разницы температур наружного воздуха и тела биофильтра. Основная масса воздуха поступает в тело биофильтров через междудонное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то ток воздуха будет восходящий (от дренажа к поверхности), при обратном соотношении-нисходящий, а при равенстве температур вентиляция может вообще отсутствовать. Как показали исследования работы биофильтров, необходимое количество воздуха должно составлять 8-12 м3 на 1 м3 сточной воды.

Биофильтры высотой более 2 м должны иметь искусственную вентиляцию. В этом случае воздух нагнетается вентилятором в междудонное пространство между днищем и дренажем под давлением 100 мм вод. ст. (980 Па). В том месте отводного лотка, где вода выходит из-под фильтра, устраивают гидравлический затвор высотой 200 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело фильтра и не прорывался вместе с выходящей из-под него водой.

Рис. 7. Схема устройства дискового биофильтра 1 - дисковый блок из пластин; 2 - вал; 3-привод дискового блока; 4 и 7 - подводящий и отводящий лотки; 5 - ванна; 6 - водослив

Реактивный вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке (рис. 6). Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, ороситель вращается. Диаметр отверстий в трубах принимается 10-15 мм; расстояние между отверстиями увеличивается от периферии к центру. Союзводоканалпроектом разработаны типовые проекты биофильтров диаметром 15, 21, 27 и 29 м с вращающимися оросителями.

В практике очистки сточных вод при расходах до 500 м3/сут находят применение погружные (дисковые) биофильтры (рис. 7). На вращающихся дисках, погруженных в сточную воду, образуется биологическая Пленка, с помощью которой осуществляется окисление сорбированных на ней органических загрязнений. Сточная вода поступает в корыто с полукруглым днищем через впускное отверстие, а отводится с противоположной стороны. Диски имеют обычно диаметр 2-3 м и вращаются со скоростью 1-40 об/мин. Расстояние между дисками 15-20 мм. Дисковые биофильтры устанавливают в виде полносборных установок заводского изготовления.

Исследованиями, проведенными в МИСИ им. В. В. Куйбышева и Одесском инженерно-строительном институте, установлено, что погружные биофильтры просты и надежны в эксплуатации и потребляют мало энергии для насыщения воды кислородом.

Часть 2

Биофильтры подразделяются на биофильтры периодического действия, или контактные, и биофильтры непрерывного действия. Биофильтры непрерывного действия в свою очередь могут быть подразделены на: а) биофильтры обычного типа; б) аэрофильтры; в) высоконагружаемые.

Контактные биофильтры вследствие их малой производительности и высокой стоимости в настоящее время не применяются.

Непрерывно действующий биофильтр обычного типа состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. В плане биофильтры могут иметь форму круга, прямоугольника, квадрата или восьмиугольника. Их можно устраивать с водонепроницаемыми или ажурными стенками. Поступление воды в аппараты, распределяющие ее по поверхности биофильтра, происходит непрерывно, орошается же его поверхность через небольшие интервалы в 3-5 мин. водой, подаваемой из этих аппаратов в виде отдельных капель или струй. Такое орошение способствует лучшему проникновению в тело биофильтра воздуха, необходимого для окислительного процесса. Воздух также поступает через ажурные стенки биофильтра и дренаж. Схема работы непрерывно действующего биофильт. ра заключается в следующем: осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает g распределительные устройства, при помощи которых вода перио. дически напускается на поверхность биофильтра. Профильтро. вившаяся через толщу биофильтра вода проходит через отверЛ стия в дырчатом дне (дренаже), поступает на сплошное непро. ницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра.

Процессы окисления, происходящие в теле биофильтра, аналогичны процессам, которые происходят при естественных методах очистки воды на полях орошения или фильтрации, но отличаются от последних значительно большей интенсивностью. Эффект очистки сточных вод нормально работающими биофильтрами очень высок, БПК выходящего стока снижается на 90% и более.

Расчет биофильтра состоит в определении необходимого объема загрузочного материала для очистки поступающей воды, а также расчета распределительных устройств для орошения воды, дренажа и лотков для пропуска и сбора осветленных вод.

Объем загрузочного материала определяют по так называемой окислительной мощности биофильтра (ОМ), под которой понимается число граммов кислорода, которое может быть отдано 1 мг загрузочного материала в сутки для снижения биохимической потребности сточной воды.

Эта величина окислительной мощности биофильтра сильно -отеблется даже в каждом биофильтре, так как ее значение зависит от многих причин, например, от температуры наружного Б03цуха и сточной воды, концентрации и свойств поступающей жидкости, от материала загрузки, способа подачи воздуха и пр. Величина ее лишь в общем виде отображает процессы окисления органических веществ, происходящих в теле биофильтра. Можно говорить лишь о среднем значении окислительной мощности, определяемом экспериментальным путем на основе натурных измерений.

Рис. 1. Биофильтр прямоугольной формы

Необходимым условием нормальной работы биофильтра является их продувка воздухом. В биофильтрах обычного типа их продувка или вентиляция происходят естественным путем за счет разности температур наружного воздуха и тела биофильтра.

В отечественной практике наибольшее распространение получили прямоугольные фильтры (рис. 1).


Рис. 2. Днище биофильтра из железобетонных плит

Лучшим типом дренажа является дренаж из железобетонных плит, которые укладывают на бетонные или кирпичные опоры (рис. 2). В плитах имеются отверстия квадратной или цилиндрической формы. Другие типы дренажей (из кирпича, из керамических труб) применяются редко.

Днищу биофильтра придают уклон 0,02 к сборным лоткам, располагаемым на расстоянии 2,5-4 м друг от друга (в зависимости от размеров биофильтра) с уклоном 0,005-0,02. Из сборных лотков вода поступает в отводные лотки, имеющие уклон 0,003-0,005. Иногда сборных лотков под биофильтром не устраивают и его днищу придают общий уклон 0,01 в сторону отводных лотков. Фильтры могут быть как наземного, так и подземного типа.

Стенки наземных фильтров делают иногда ажурными, т.е. с отверстиями, через которые поступает воздух. Материалами для стенок могут служить железобетон, кирпич, бут и др.

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микро-биальной пленки. С другой стороны, загрузочный материал должен быть достаточно пористым, так как это способствует хорошей продувке фильтра и в значительной мере предотвращает заиление. Материал должен обладать также достаточной прочностью, стойкостью против выветривания; кроме того, он не должен содержать примесей, которые могли бы повлиять на ба реальную флору биофильтров. Следует по возможности испо| зовать местный недорогой материал. В качестве загрузочного териала для биофильтров до сих пор применяли преимуществ но котельный шлак и кокс. Однако можно также примем щебень твердых пород, щебень из кирпича-железняка, гравий! гальку.


Рис. 3. Биофильтр круглой формы

Нормальная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Это орошение производится специальными распределительными устройствами, которые подразделяются на две основные группы: распределители неподвижные и подвижные.

К неподвижным распределителям относятся: а) дырчатые желоба или трубы и б) разбрызгиватели или спринклер; к подвижным: а) качающиеся желоба; б) движущееся наливное колесо и в) вращающиеся реактивные распределители (просители). При распределении воды по поверхности при помощи желобов или

В последнее время за рубежом начали применять подвижные еактивные распределители, работающие по принципу РрГиерова колеса. Стояк, куда поступает осветленная сточная во-С я установлен на шариковых подшипниках и может свободно вращаться вокруг вертикальной оси. К стояку присоединены две или четыре консольные горизонтальные трубы, расположенные оадиально на расстоянии 0,15 м над поверхностью биофильтра. Трубы удерживаются в горизонтальном положении металлическими растяжками. На трубе имеются отверстия, расположенные на определенном расстоянии друг от друга. Когда из этих отверстий под некоторым напором (от 0,25 до 0,8 м) выливается вода, распределитель под действием реактивной силы движется в противоположную сторону. Недостатком таких распределителей является возможность заиления отверстий и, как следствие этого, неравномерное орошение поверхности биофильтра.

На рис. 4 показан другой тип подвижного распределителя- распределитель в виде движущегося наливного колеса. Наливное колесо представляет собой длинный полый цилиндр с лопастями на поверхности. Цилиндр расположен над биофильтром и при подаче в него сточной воды движется по рельсам, уложенным на продольных стенах биофильтра. Питание распределителя сточной водой производится из жолоба при помощи сифона, конец которого опущен в жолоб. Сточная вода, поступая на лопасти одной стороны оросителя, приводит его во вра-шение. Ороситель начинает двигаться по рельсам вдоль биофильтра. Для изменения направления движения оросителя служит специальное приспособление, которое состоит из поддона с рукоятками и буфера; рукоятка, наталкиваясь на буфер, поворачивает поддон, вследствие чего сточная вода поступает на другую сторону подвижного колеса и оно движется в противоположную сторону.

К достоинствам таких распределителей следует отнести небольшую величину напора, необходимого для их работы, и равномерное распределение воды. Недостатком их является ненадежная работа зимой, так как при обмерзании рельсов аппарат может остановиться. Поэтому эти распределители могут найти себе применение главным образом для биофильтров, устраиваемых в южных районах, или для биофильтров малых размеров, устанавливаемых в закрытых помещениях.

Для расчета сборной сети лотков, отводящих очищенную жидкость из-под биофильтра (днища), необходимо знать расходы воды.


Рис. 4. Подвижный распределитель

В том месте отводного лотка, где вода выходит из-под фильтра, устраивают водяной затвор высотой 200-250 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело аэрофильтра и не прорывался вместе с выходящей из-под него очищенной водой. Кроме того, чтобы создать дополнительное сопротивление движению воздуха вдоль внутренней поверхности стен аэрофильтра, их делают с горизонтальными ребрами. Междудонное пространство обычно делают высотой 0,5-0,6 м и перекрывают железобетонными плитами с отверстиями. Плиты покоятся на бетонных столбиках или ребрах. Воду на такие биофильтры подают, как правило, при помощи сприн-клерного распределителя.

Расчет аэрофильтра также ведут по окислительной мощности. Вследствие того что процесс окисления в аэрофильтре идет более интенсивно, чем в биофильтрах других типов, ОМ принимают обычно до 600 г. кислорода в сутки на 1 м3 загрузочного материала. Расход воздуха в сутки в среднем составляет 25- 30 м3 на 1 м3 загрузки. Такие аэрофильтры обычно работают с повышенными нагрузками (до 4-5 м3 воды в сутки на 1 м3 загрузки), поэтому во избежание быстрого заиления тела загрузки сточная вода, поступающая на аэрофильтры, не должна быть высококонцентрированной, т.е. БПК поступающей воды не должна быть выше 100-120 мг!л. Для этого высококонцентрированную сточную воду либо подвергают предварительной очистке на аэротенках (как это делается на Кожуховской станции аэрации), либо концентрированный сток разбавляют очищенной водой (Щукинская биологическая станция).

Аэрофильтры можно загружать шлаком или щебнем. Размеры зерен загрузки принимают различные. Так, например, на Кожуховской станции основной слой загружен щебнем или шлаком крупностью 25 мм; на Щукинской станции в одних секциях имеется загрузка крупностью 50-60 мм, в других - 25-45 мм и т. д.

Высоконагружаемые биофильтры начали внедряться в практику строительства в последнее время. Их отличие от обычных фильтров состоит прежде всего в том, что в них предусматривается иногда не полная биологическая очистка, как в обычных биофильтрах, а частичная очистка. Процесс минерализации органических загрязнений в этих биофильтрах по существу заканчивается стадией окисления легко окисляемых органических веществ; в этом случае сточная вода очищается не полностью. Вследствие этого нагрузка как по воде, так и по загрязнениям на 1 м2 поверхности биофильтра принимается увеличенной.


Рис. 5. Схема высоконагружаемых фильтров, работающих с рециркуляцией

При повышенной нагрузке в теле биофильтра происходит быстрое накопление биологической пленки, что может привести к заилению биофильтра. Промывка его обеспечивается разбавлением поступающих сточных вод очищенной водой, т.е. так называемой рециркуляцией и загрузкой биофильтра гладким материалом (щебнем). Следует указать, что в отдельных случаях увеличение высоты биофильтра может дать такие же результаты, как и применение рециркуляции.

Опыты, проведенные Академией коммунального хозяйства, показали, что для успешной работы таких фильтров необходимо, чтобы концентрация поступающей воды по ВПК не превышала 200 мг/л. Если концентрация сточной воды выше, то необходимо применять разбавление стока, т.е. рециркуляцию.

Исследования таких биофильтров в эксплуатационных условиях Щукинской биологической станции, произведенные кафедрой канализации Московского института инженеров городского строительства совместно с коллективом работников Щукинской станции, показали, что даже при нагрузке до 4,5 м3 на 1 м3 материала качество очищенного стока вполне удовлетворительно. В качестве загрузки наиболее рационально применять гранитный щебень крупностью 25-50 мм. При концентрации сточной воды по ВПК до 170 мг/л рециркуляция не обязательна.

→ Очистка сточных вод

Классификация биофильтров


Классификация биофильтров


Биофильтры могут работать на полную и неполную биологическую очистку и классифицируются по различным признакам, основными из которых являются конструктивные особенности и вид загрузочного материала.

По виду загрузочного материала биофильтры делятся на: биофильтры с объемной загрузкой (гравий, шлак, керамзит, щебень и др.) и биофильтры с плоскостной загрузкой (пластмассы, асбестоцемент, керамика, металл, ткани и др.).

Биофильтры с объемной загрузкой подразделяются на следующие виды: – капельные, имеющие крупность фракций загрузочного материала 20-30 мм и высоту слоя загрузки 1-2 м; – высоконагружаемые, имеющие крупность загрузочного материала 40-60 мм и высоту слоя загрузки 2-4м; – биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60-80 мм и высоту слоя загрузки 8-16 м.

Объемный загрузочный материал имеет плотность 500-1500 кг/м3 и пористость 40-50%.

Биофильтры с плоскостной загрузкой подразделяются на следующие виды: – с жесткой засыпной загрузкой. В качестве загрузки могут использоваться керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100-600 кг/м3, пористость 70-90%, высота слоя загрузки 1-6 м; – с жесткой блочной загрузкой. Блочные загрузки могут выполняться из различных видов пластмассы (гофрированные и плоские листы или пространственные элементы), а также из’ асбестоце-ментных листов. Плотность пластмассовой загрузки 40-100 кг/м3, пористость 90-97%), высота слоя загрузки 2-16 м; – с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5-60 кг/м3, пористость 94-99%, высота слоя загрузки 3-8 м.

Пропускная способность биофильтров зависит от конструктивных особенностей того или иного типа сооружения и объясняется содержанием активной биомассы на единицу объема биофильтра.

Биофильтры с объёмной загрузкой (капельные биофильтры). В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха осуществляется через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде – обычно 0,5-2 м3 на 1 м3 объема загрузочного материала в сутки. Капельные биофильтры впервые появились в Салфорде (Великобритания) в 1893 г., их рекомендуется применять при расходе сточных вод не более 1000 м3/сут. Они предназначаются для полной биологической очистки сточных вод.

Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, профильтровавшаяся через толщу загрузки, проходит через дренажную систему, а далее по непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых отмершая биоплёнка отделяется от очищенной воды. При нагрузке по органическим загрязнениям больше допустимой, загрузочный материал быстро заиливается, и работа капельных биофильтров резко ухудшается.

Высоко нагружаемые биофильтры. В начале XX столетия появились биофильтры, которые у нас в стране получили название – аэрофильтры, а за рубежом – биофильтры высокой нагрузки.

Отличительной особенностью этих сооружений является более высокая, по сравнению с капельными биофильтрами, окислительная мощность, что обусловлено меньшей заиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря крупным фракциям загрузочного материала и повышенной в несколько раз нагрузке по воде. Высокая скорость движения сточной воды в биофильтре обеспечивает постоянный вынос задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела биофильтра. Конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции. Они предназначаются для неполной и полной биологической очистки сточных вод.

Башенные биофильтры. Эти биофильтры имеют высоту 8-16 м и применяются для очистных станций пропускной способностью до 50 тыс.м3/сут при благоприятном рельефе местности и при БПК очищенных сточных вод 20-25 мг/л. В отечественной практике они распространения не получили.

Биофильтры с плоскостной загрузкой. Появление в 50-х годах XX века плоскостных – блочных, мягких и засыпных загрузочных материалов позволило значительно повысить производительность биологических фильтров (рис. 12.3).

Рис. 12.3. Биофильтр с плоскостной (пластмассовой) загрузкой:
1 – корпус из облегчённых листов по металлическому каркасу; 2 – пластмассовая загрузка; 3 – решетка; 4 – бетонные столбовые опоры; 5 – подводящий трубопровод; б – реактивный ороситель; 7 – отводящие лотки

Как видно из таблицы, плотность плоскостных загрузочных материалов (12,2-140 кг/м3) значительно меньше, чем традиционных из гравия или щебня (1350-1500 кг/м3), что позволяет упростить и облегчить фундамент и ограждающие конструкции биофильтров. Пористость плоскостных загрузочных материалов (87-99%) более чем вдвое выше, чем у объемных загрузок (40-50%), что позволяет отказаться от принудительной вентиляции и сэкономить значительное количество электроэнергии. Удельная поверхность плоскостных загрузочных материалов 80-450 м /м, против 50-80 м /м3 у объемных. Однако, даже при одинаковой удельной поверхности активная поверхность плоскостных загрузочных материалов значительно больше за счет отсутствия мертвых зон, образующихся при соприкосновении фракций засыпного загрузочного материала.

Установлено, что на производительность биофильтра большое влияние оказывает конфигурация загрузочного материала. В загрузочных материалах, где жидкость движется строго вертикально по гладкой поверхности, гидравлический режим ламинарный (идеальный вытеснитель), а в загрузочном материале со сложной формой поверхности, где поток отклоняется по вертикали (Флокор, Пласдек и др.), режим движения жидкости турбулентный. По данным зарубежных ученых, производительность сложных загрузочных материалов, по сравнению с гладкими (при одинаковой площади удельной поверхности и в одинаковых условиях работы), на 67% выше.

Биофильтры насчитывают столетнюю историю использования их в качестве биологических окислителей. Но с конца 50-х годов XX столетия число строящихся станций биофильтрации в нашей стране по субъективным и объективным причинам стало уменьшаться. Среди этих причин можно выделить следующие: неиндустриальность строительства; отсутствие загрузочного материала; малая пропускная способность; изменение состава поступающих на очистку сточных вод; ненадежность работы при перегрузках (особенно по органическим загрязнениям) и ряд других. Из общего числа проектируемых и строящихся биологических окислителей на долю биофильтров приходится не более 10%.

Вместе с тем при наличии дешевых местных материалов и дефиците электроэнергии, а также в тяжелых грунтовых условиях и сейсмичных районах предпочтение отдается биофильтрам. Например, в Киргизии из 31 действующей станции биологической очистки – 28 с биофильтрами. Следует отметить, что в ряде отраслей промышленности (гидролизно-дрожжевая, пищевая, и др.), где сточные воды обладают значительной пе-нообразующей способностью, целесообразно применять биофильтры.

В настоящее время сотни построенных станций биофильтрации работают в режиме, превышающем их расчетную пропускную способность, как по расходу сточных вод, так и нагрузкам по органическим загрязнениям. Весьма актуальной стала проблема модернизации таких станций биофильтрации, что явилось стимулом для разработки новых высокопроизводительных загрузочных материалов. Следствием этого и стало появление новых биофильтров с плоскостной загрузкой. Они имеют высокую индуст-иальность строительства, включая заводское изготовление блочного загрузочного материала или комплекса сооружений небольшой пропускной способности. Им свойственна высокая пропускная способность, как по расходу сточных вод, так и по снижению органических загрязнений, превышающая соответствующие показатели биофильтров с объемной загрузкой в 3-8 раз.

Сооружения биологической очистки сточных вод. Биофильтры

Биофильтры. Представляют собой прямоугольные или круглые в плане сооружения со сплошными стенками и двойным дном: верхним в виде колосниковой решетки, и нижним сплошным. Колосниковая решетка или дырчатое днище, дренаж биофильтров устраивается из железобетонных плит. Общая площадь отверстий дренажа принимается не менее 5—8% площади поверхности фильтра.


Фильтрующим материалом служит щебень, галька горных пород, керамзит, шлак. Загрузка фильтрующего слоя по всей его высоте должна производиться материалом одинаковой крупности (табл.61).



Таблица 61. Крупность зерен загрузочного материала для биофильтра (СНиП II-Г. 6—62)


Мелочи в загрузочном материале должно быть не более 5%. Нижний поддерживающий слой во всех типах биофильтров должен применяться с размерами 60—100 мм.


Орошение биофильтров сточными водами производится через небольшие равномерные промежутки времени. Распределение сточных вод может быть капельным, струйным или в виде тонкого слоя.


Кислород, обеспечивающий жизнедеятельность бактерий, поступает в тело фильтра естественной или искусственной вентиляцией. Количество кислорода, получаемое с 1 м3 фильтрующего материала в сутки для снижения БПК сточных вод, называется окислительной мощностью. Она зависит от температуры сточных вод, наружного воздуха, характера загрязнений (табл. 62).



Таблица 62. Окислительная мощность, г, кислорода в сутки на 1 м3 загрузочного материала биофильтров (СНиП II-Г. 6—62)


Примечания: 1. Указанные в табл. 62 величины окислительной мощности определены для сточных вод со среднезимней температурой +10°. При другой среднезимнеи температуре сточных вод значения окислительной мощности следует увеличивать илн уменьшать пропорционально отношению фактической температуры к 10°С


2. При значении часового коэффициента неравномерности притока более 2, объем фильтрующего материала следует увеличить пропорционально отношению фактического коэффициента неравномерности К=2.


При среднегодовой температуре наружного воздуха ниже + 10°С и коэффициенте рециркуляции сточных вод более 4, а также при среднегодовой температуре воздуха до +3°С биофильтры любой производительности, и при среднегодовой температуре от +3 до +6°C биофильтры с производительностью до 500 м3 в сутки необходимо размещать в отапливаемых помещениях с расчетной температурой внутреннего воздуха на +20С выше температуры сточных вод и пятикратным воздухообменом в час. При производительности более 500 м3/сутки и среднегодовой температуре воздуха от +3 до +6°C биофильтры можно размещать в неотапливаемых помещениях облегченной конструкции.


При поступлении сточных вод с перерывами в течение суток строительство биофильтров в неотапливаемых помещениях или открытого типа должно обосновываться теплотехническим расчетом. При этом необходимо принимать во внимание опыт эксплуатации очистных сооружений, находящихся в данном районе или в других районах с аналогичными условиями.


Окислительную мощность биофильтра ОМ можно определить по формулам:


при работе с рециркуляцией


, (135)

без рециркуляции


, (136)

где LCM — БПК5 смеси поступающих сточных вод, мг/л;

Ld — БПКб поступающих на очистку сточных вод, мг/л;

Lt — БПК5 очищенных сточных вод, мг/л;

QcyT — суточный расход сточных вод, м3/сутки;

F — площадь фильтра, м2;

Н — высота загрузки фильтра, м;

q — расход сточных вод, л/сек;

n — коэффициент рециркуляции, определяемый по формуле (133).


При расчете биофильтров для промышленных сточных вод предприятий пищевой промышленности можно рекомендовать коэффициент скорости биохимического окисления Кс.б, указывающий на интенсивность прироста биологической пленки, определяемый по формуле


Кс.б = 21/a, (137)

где а — разность, проц., между ХПК и БПК20 сточных вод.


Низкие значения коэффициента указывают на нецелесообразность биохимических способов очистки сточных вод. Обратная величина коэффициента скорости биохимического окисления характеризует скорость прироста биологической пленки.


Коэффициент скорости биохимического окисления смеси сточных вод с различным размером загрязнений определяется по формуле


, (138)

где Q1, Q2...Qn — расходы различных по концентрации сточных вод;

а1, а2,...an — соответствующие разности, проц., между ХПК и БПК20.


Чем меньше коэффициент, тем больше интенсивность фактора прироста биологической пленки, поэтому коэффициент оказывает влияние на выбор фильтрующего материала (табл. 63).



Таблица 63. Зависимость вида загрузочного материала от коэффициента скорости биохимического окисления


Биофильтры подразделяются на капельные, высоконагружаемые, аэрофильтры, башенные.


Отличительной особенностью капельных биофильтров является небольшой диаметр фракций загрузочного материала (30— 50 мм) и высота загрузки (2 м), при этом нижний поддерживающий слой высотой 0,2 м принимается размером 60—100 мм, а также низкая нагрузка по сточной воде от 0,5 до 1,0 мг на 1 мг загрузки фильтра.



Высоконагружаемые биофильтры отличаются от капельных значительно большей гидравлической нагрузкой. Для капельных биофильтров нагрузка на 1 м2 поверхности в сутки составляет 1—2 м3 сточных вод, для высоконагружаемых — 10—30 м3 на 1 м2 поверхности в сутки, т. е. в 10—30 раз больше.


Более высокая окислительная мощность высоконагружаемых биофильтров обусловливается незаиляемостыо, лучшим обменом воздуха, что достигается благодаря более крупному загрузочному материалу и повышенной нагрузкой по воде. Значительные скорости прохода воды через загрузочный материал обеспечивают постоянный вынос трудноокисляемых примесей и отмирающей биопленки. Крупность частиц загрузки принимается размером 40—60 мм, что обеспечивает большой объем пор.


Конструктивные и эксплуатационные особенности высоконагружаемых биофильтров и их отличие от капельных следующие:

  1. высота слоя фильтрующей загрузки доходит до 4 м. Количество загрязнений, вносимых на 1 м2 площади фильтра в сутки, зависит от высоты фильтра. При высоте его 4 м окислительная мощность составляет 2400 г 02/м2, 3м — 2200, 2,5 м — 2000, 1 м— 1800 г 02/м2;
  2. крупность зерен доходит до 65 мм по всей высоте загрузки;
  3. искусственная вентиляция фильтра обеспечивается особой конструкцией днища и дренажа (ограждение глухими стенами с гидрозатвором) ;
  4. интервалы в орошении фильтра сточной водой должны быть сокращены до минимума. Нагрузка по воде должна быть повышенной и постоянной;
  5. направление концентрированных сточных вод на фильтры недопустимо, поэтому для поддержания повышенной нагрузки по воде необходимо их разбавление условно чистыми или очищаемыми водами при помощи рециркуляции;
  6. высоконагружаемые биофильтры могут работать на заданную степень очистки сточных вод;
  7. применяются как для полной, так и для частичной очистки сточных вод.

Высоконагружаемые биофильтры могут быть одно- (рис. 19) и двухступенчатые.



Рис. 19. Схема одноступенчатых высоконагружаемых биофильтров: П.О. — первичный отстойник; Н.С. — насосная станция; Б — биофильтр; В.О. — вторичный отстойник, К.Б, — коигакгиый бассейн; 1,2 — возможные варианты рециркуляции очищенной жидкости, 3 — удаление избыточной биопленки; 4 — хтораторная; 5 — очищенные и обеззараженные сточные воды иа выпуск.


Применение двухступенчатых высоконагружаемых биофильтров рекомендуется при благоприятном рельефе местности и при необходимости более глубокой очистки сточных вод. Разновидностью высоконагружаемых биофильтров могут быть сооружения перемежающейся фильтрации (рис. 20).



Рис. 20. Схема двухступенчатых высоконагружаемых биофильтров с перемежающейся фильтрацией: ПО — первичный отстойник, K1, К2 — камеры переключения, ИС — насосная станция, Б — биофильтры, ВО — вторичные отстойники, КБ контактный бассейн, 1 — удаление избыточной бнопленки, 2 — хлораторная, 3 — очищенные сточные воды на выпуск


Разновидностью высоконагружаемых биофильтров являются аэрофильтры. Особенность фильтров этого типа.— большая высота (3—4 м) и принудительная вентиляция, которая может осуществляться вентиляторами низкого давления.


Материал загрузки тела аэрофильтра должен быть по возможности гладким. Аэрофильтры устраиваются двух- и трехслойные. Нижний слой рекомендуется устраивать толщиной 0,2 м из кусков загрузочного материала размером 50—70 мм, а верхний — размером 30—40 мм (рис. 21).



Рис. 21. Схема аэрофильтра: 1 — загрузка, 2 — реактивный водораспределитель, 3 — гидрозатвор


Устойчивой работы и высокого эффекта очистки на аэрофильтрах можно достичь, если сточные воды, направляемые на очистку, будут иметь БПК не более 150 мг/л. Расчет аэрофильтров можно проводить по их окислительной мощности (табл. 64).



Таблица 64. Окислительная мощность, г, кислорода на 1 м3 загрузки аэрофильтра (СНиП II-Г. 6—62)


Данные табл. 64 определены для сточных вод со среднезимней температурой +10°C. При температуре сточных вод более или менее +10оС окислительную мощность аэрофильтра необходимо увеличивать или уменьшать соответственно пропорционально отношению фактической температуры к+10°С.

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные