Что такое Антиматерия? Антиматерия « Интереcно о науке Что такое антиматерия простым языком

В физике и химии антиматерия - это вещество, которое состоит из античастиц, то есть из антипротона (протон с отрицательным электрическим зарядом) и из антиэлектрона (электрон с положительным электрическим зарядом). Антипротон и антиэлектрон образуют атом антиматерии подобно тому, как электрон и протон образуют атом водорода.

Общее понятие о материи и антиматерии

Каждый знает ответ на вопрос о том, что такое материя, то есть это субстанция, которая состоит из молекул и атомов. Сами атомы, в свою очередь, состоят из электронов и ядер, образованных протонами и нейтронами. Понимание вопроса, что такое материя, дает возможность понять, что такое антиматерия. Под ней понимается субстанция, составляющие частицы которой имеют противоположный электрический заряд. В случае пары нейтрон-антинейтрон их заряды равны нулю, но магнитные моменты направлены противоположно.

Основное свойство антиматерии - это ее способность к аннигиляции при встрече с обычной материей. В результате контакта этих субстанций масса исчезает и полностью переводится в энергию. Согласно космической теории, во Вселенной существует равное количество материи и антиматерии, этот факт следует из теоретических рассуждений. Однако эти субстанции разделены между собой огромными расстояниями, поскольку любая их встреча приводит к грандиозным космическим феноменам уничтожения материи.

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника "Памела", миссией которого было изучение частиц, испускаемых Солнцем.

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия - это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

В области медицины основное использование антиматерии - это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Сколько стоит грамм антиматерии и где ее хранить?

Производство антиматерии с помощью ускорителей элементарных частиц требует огромных энергетических затрат. Кроме того, антиматерию тяжело хранить, поскольку она при любом контакте с обычным веществом самоуничтожается. Поэтому хранят ее в сильных электромагнитных полях, которые также требуют больших энергетических затрат на их создание и поддержание.

В связи с вышесказанным можно сделать вывод, что антиматерия является самой дорогой субстанцией на земле. Ее грамм оценивается в 62,5 миллиарда долларов США. По другим оценкам, предоставленным ЦЕРН, чтобы создать одну миллиардную грамма антивещества, необходимо затратить несколько сотен миллионов швейцарских франков.

Космос - источник антиматерии

На данном этапе развития технологий искусственное создание антиматерии - это низкоэффективный и затратный способ. Ввиду этого ученые из НАСА планируют собирать магнитными полями антиматерию в поясе Ван Аллена Земли. Этот пояс находится на высоте нескольких сотен километров над поверхностью нашей планеты и имеет толщину в несколько тысяч километров. Эта область космоса содержит большое количество антипротонов, которые образуются в результате реакций элементарных частиц, вызванных столкновениями космических лучей в верхних слоях атмосферы Земли. В количество обычной материи невелико, поэтому антипротоны могут существовать в нем достаточно долгое время.

Другой источник антивещества - это аналогичные радиационные пояса вокруг планет-гигантов Солнечной системы: Юпитера, Сатурна, Нептуна и Урана. Особое внимание ученые уделяют Сатурну, который, по их мнению, должен производить большое количество антипротонов, возникающих в результате взаимодействия заряженных космических частиц с ледяными кольцами планеты.

Также ведутся работы в направлении более экономного хранения антивещества. Так, профессор Масаки Гори (Masaki Hori) заявил о разработанном методе удержания антипротонов с помощью радиочастот, что, по его словам, позволит значительно сократить размеры контейнера для антиматерии.

Общедоступность информации любого рода, обилие фантастических фильмов, тематика которых связана с теми или иными научными или псевдонаучными проблемами, популярность сенсационных романов – всё это привело к формированию немалого количества мифов о нашем мире. Например, благодаря многочисленным теориям, обыгрывающим варианты Конца Света, широко употребляемым стало понятие «антивещество». В художественных произведениях и апокалиптических теориях под антивеществом подразумевается некая субстанция, по своим свойствам противоположная веществу, материи. Своего рода чёрная дыра, поглощающая и уничтожающая всё, что попадает в зону её притяжения. Что такое антивещество, на самом деле нужно спрашивать не у писателей, режиссёров и одержимых ожиданием всеобщего коллапса, а у учёных.

Античастицы и антивещество – обычная часть мироздания

Учёные расскажут, что в антивеществе нет ничего страшного и катастрофичного. Хотя бы в силу того обстоятельство, что противопоставлять вещество и антивещество нельзя – то, что принято называть антивеществом, на самом деле является разновидностью вещества, то есть материи. Согласно научной классификации, частицами вещества принято называть материальные структуры, состоящие из атомов, окружённых элементарными частицами. Базовой частью атома является ядро, имеющее положительный заряд, а элементарные частицы вокруг него заряжены отрицательно. Это те самые электроны, название которых используется нами в повседневной жизни ежедневно при упоминании электроники и электрических приборов.

Антивещество составляют античастицы, то есть те материальные структуры, ядра которых имеют отрицательный заряд, а окружающие их частицы – положительный.

Положительные элементарные частицы были обнаружены учёными лишь в 1932 году и названы позитронами. Также нет никакого фатального драматизма во взаимодействии частиц и античастиц, вещества и антивещества. Происходит аннигиляция – процесс превращения вступивших в реакцию вещества и антивещества в принципиально новые частицы, не существовавшие первоначально и обладающие отличными от исходных, «материнских» частиц, свойствами. Правда, «побочный эффект» может быть довольно опасен: аннигиляция сопровождается выделением огромного количества энергии. Подсчитано, что реакция 1 килограмма вещества с 1 килограммом антивещества высвободит энергию, равную примерно 43 мегатоннам взорвавшегося тротила. Наиболее мощная из взорванных на Земле ядерных бомб имела потенциал около 58 мегатонн в тротиловом эквиваленте.

Как получить антивещество – для науки это не вопрос

Реальность антивещества является доказанным фактом. Теоретические предположения учёных гармонично совместились с общей научной картиной мира, а потом античастицы были обнаружены и экспериментальным путём. Вот уже почти пятьдесят лет, как античастицы получают искусственным путём при реакции взаимодействия между частицами и античастицами. В 1965 году был синтезирован анти-дейтрон, а спустя 30 лет был получен анти-водород (его отличие от «классического» водорода в том, что атом антивещества состоит из позитрона и антипротона). Учёные пошли дальше и в 2010-2011 годах сумели в лабораторных условиях «поймать» атомы антивещества. Пускай в «ловушке» оказались лишь около 40 атомов и удерживать их сумели 172 миллисекунды.

Практические перспективы изучения античастиц очевидны, учитывая огромный энергетический потенциал взаимодействия частиц и античастиц.

Применение антивещества и запуск данного процесса в контролируемом режиме фактически раз и навсегда снимает проблему получения энергии.

Сложность, как всегда, в деньгах: расчёты показывают, что на сегодняшний день производства лишь одного грамма антивещества стоило бы около 60 триллионов долларов. Так что традиционные источники энергии пока остаются актуальными – а исследования нужно продолжать. Тем более, что уже на рубеже XX-XXI веков астрономы и астрофизики обнаружили источники антивещества во Вселенной. В частности, были получены данные о настоящих потоках положительно заряженных элементарных частиц (позитронов), двигающихся в космическом пространстве. Появилось несколько в большей или меньшей степени обоснованных практическими исследованиями теорий, объясняющих механизмы формирования античастиц в естественных условиях.

Очень популярен вариант объяснения, согласно которому античастицы формируются в сильном гравитационном поле в чёрных дырах. Данное гравитационное поле взаимодействует с «обычным» веществом, в результате процесса «переработки» материи и получаются позитроны – частицы, которые под влиянием гравитации изменили свой заряд с отрицательного на положительный. Другая концепция указывает на естественные радиоактивные элементы, самыми известными из которых являются сверхновые звёзды. Предполагается, что эти природные ядерные реакторы в качестве побочной продукции «вырабатывают» именно античастицы. Есть и прочие версии: например, процесс слияния двух звёзд может сопровождаться формированием частиц с изменённым зарядом или, напротив, такой эффект может порождать гибель звёзд.

Где найти антивещество – головоломка для исследователей

Таким образом, наличие антивещества неоспоримо. Но, как обычно и бывает при исследовании тайн Вселенной, возникла фундаментальная проблема, решить которую науке на данном этапе её развития пока не удаётся. Согласно принципу симметричности строения Вселенной , в нашем мире должно содержаться приблизительно столько же вещества, сколько и антивещества, столько же атомов, состоящих из положительного ядра и отрицательно заряженных частиц, сколько и атомов с отрицательным ядром и положительными частицами. Но на практике никаких следов масштабного скопления антивещества (теоретики даже придумали название для таких скоплений – «антимир») на данный момент не обнаружено.

При астрономических наблюдениях антивещество достаточно хорошо фиксируется лишь благодаря испускаемому гамма-излучению. Впрочем, оптимисты не теряют надежды – и вполне обоснованно.

Во-первых, Земля может находиться в той «вещественной» части Вселенной, которая максимально удалена от «антивещественной» половины. Значит, всё дело в недостаточно мощных и совершенных приборах наблюдения. Во-вторых, по своему электромагнитному излучению объекты, состоящие из вещества и антивещества, неотличимы, поэтому оптический метод наблюдения здесь бесполезен. В-третьих, не отвергнуты компромиссные теории – например, о том, что Вселенная имеет ячеистую структуру, в которой каждая ячейка состоит наполовину из вещества, наполовину из антивещества.

Александр Бабицкий

В 1930-м году известный английский физик-теоретик Поль Дирак, выводя релятивистское уравнение движения для поля электрона, получил также и решение для некой иной частицы с той же массой и противоположным, положительным, электрическим зарядом. Единственная известная в то время частица с положительным зарядом - протон, не могла быть этим двойником, так как значительно отличалась от электрона, в том числе и в тысячи раз большей массой.

Позже, в 1932-м году американский физик Карл Андерсон подтвердил предсказания Дирака. Изучая космические лучи, он открыл античастицу электрона, которая сегодня называется позитрон. Спустя 23 года на американском ускорителе были обнаружены антипротоны, а еще через год - антинейтрон.

Частицы и античастицы

Как известно, любая элементарная частица обладает рядом характеристик, чисел, описывающих ее. Среди них следующие:

  • Масса - физическая величина, которая определяет гравитационное взаимодействие объекта.
  • Спин - собственный момент импульса элементарной частицы.
  • Электрический заряд - характеристика, указывающая на возможность создания телом электромагнитного поля, и участия в электромагнитном взаимодействии.
  • Цветовой заряд - абстрактное понятие, которое объясняет взаимодействие кварков и формирование ими других частиц — адронов.

Также другие различные квантовые числа, определяющие свойства и состояния частиц. Если описывать античастицу, то простым языком - это зеркальное отображение частицы, с той же массой и электрическим зарядом. Почему же ученых так заинтересовали частицы, которые просто отчасти схожи и частично отличны от своих подлинников?

Оказалось, что столкновение частицы и античастицы ведет к аннигиляции - их уничтожению, и высвобождению соответствующей им энергии в виде других высокоэнергетических частиц, то есть маленький взрыв. Мотивирует к изучению античастиц и тот факт, что вещество, состоящее из античастиц (антивещество) самостоятельно не образуется в природе, согласно наблюдениям ученых.

Общие сведения об антивеществе

Выходя из вышесказанного, становится ясно, что наблюдаемая Вселенная состоит из материи, вещества. Однако, следуя известным физическим законам, ученые уверены в том, что вследствие Большого Взрыва обязаны образоваться в равном количестве вещество и антивещество, чего мы не наблюдаем. Очевидно, что наши представления о мире являются неполными, и либо ученые что-то упустили в своих расчетах, либо где-то за пределами нашей видимости, в отдаленных частях Вселенной имеется соответствующее количество антиматерии, так сказать «мир из антивещества».

Этот вопрос антисимметрии представляется одной из самых известных нерешенных физических задач.

Согласно современным представлениям, структура вещества и антивещества почти не отличаются, по той причине, что электромагнитное и сильное взаимодействия, определяющие устройство материи, одинаково действуют как по отношению частицам, так и античастицам. Данный факт был подтвержден в ноябре 2015 года на коллайдере RHIC в США, когда российские и зарубежные ученые измерили силу взаимодействия антипротонов. Она оказалась равной силе взаимодействия протонов.

Получение антивещества

Рождение античастиц обычно происходит при образовании пар частица-античастица. Если при столкновении электрона и его античастицы - позитрона, высвобождается два гамма-кванта, то для создания электрон-позитронной пары понадобится высокоэнергетический гамма-квант, взаимодействующий с электрическим полем ядра атома. В лабораторных условиях это может происходить на ускорителях или в экспериментах с лазерами. В природных условиях - в пульсарах и около черных дыр, а также при взаимодействии космических лучей с некоторыми видами вещества.

Что такое антивещество? Для понимания достаточно привести следующий пример. Простейшее вещество, атом водорода состоит из одного протона, определяющего ядро, и электрона, который вращается вокруг него. Так вот антиводород - это антивещество, атом которого состоит из антипротона и вращающегося вокруг него позитрона.

Общий вид установки ASACUSA в ЦЕРНе, предназначенной для получения и изучения антиводорода

Несмотря на простую формулировку, синтезировать антиводород достаточно сложно. И все же в 1995-м году на ускорителе LEAR в ЦЕРНе ученым удалось создать 9 атомов такого антивещества, которые прожили всего 40 наносекунд и распались.

Позже, при помощи массивных устройств была создана магнитная ловушка, которая удержала 38 атомов антиводорода в течение 172 миллисекунд (0,172 секунды), а после 170 000 атомов антиводорода - 0,28 аттограмм (10 -18 грамм). Такого объема антивещества может быть достаточно для дальнейшего изучения, и это успех.

Стоимость антивещества

Сегодня с уверенностью можно заявить, что самое дорогое вещество в мире не калифорний, реголит или графен, и, конечно же, не золото, а антивещество. Согласно подсчетам NASA -создание одного миллиграмма позитронов будет стоить около 25 миллионов долларов, а 1 г антиводорода оценивается в 62,5 триллиона долларов. Интересно, что нанограмм антивещества, объем, который был использован за 10 лет в экспериментах ЦЕРНа, обошелся организации в сотни миллионов долларов.

Применение

Изучение антиматерии несет в себе весомый для человечества потенциал. Первое и наиболее интересное устройство, теоретически работающее на антивеществе - варп-двигатель. Некоторые могут помнить таковой из известного сериала «Звездный путь» («Star Trek»), двигатель питался энергией от реактора, работающего на основе принципа аннигиляции материи и антиматерии.

В действительности существует несколько математических моделей подобного двигателя, и согласно их расчетам, для космических кораблей будущего понадобится совсем немного античастиц. Так, семимесячный полет до Марса может сократиться в продолжительности до месяца, за счет 140 нанограммов антипротонов, которые выступят катализатором ядерного деления в реакторе корабля. Благодаря подобным технологиям могут осуществиться и межгалактические перелеты, которые позволят человеку подробно изучить другие звездные системы, и в будущем колонизировать их.

Однако, антивещество, как и многие другие научные открытия, может нести угрозу человечеству. Как известно, ужаснейшая катастрофа, атомная бомбардировка Хиросимы и Нагасаки была произведена при помощи двух атомных бомб, общая масса которых составляет 8,6 тонн, а мощность - около 35 килотонн. А вот при столкновении 1 кг вещества и 1 кг антивещества высвобождается энергия равная 42 960 килотонн. Самая мощная бомба, когда-либо разработанная человечеством — АН602 или «Царь-бомба» высвободила энергию около 58 000 килотонн, но весила 26,5 тонн! Подводя итоги всего вышесказанного, можно с уверенностью сказать, что технологии и изобретения на основе антиматерии могут привести человечество, как к небывалому прорыву, так и к полному самоуничтожению.

Догадка о существовании античастиц, антивещества, а возможно, даже антимиров появилась задолго до появления экспериментальных данных, указывающих на возможность их существования в природе.

1. Первые предположения существования антиматерии

Впервые понятие «антиматерия» было придумано английским физиком Артуром Шустером в 1898 году, почти сразу же после открытия Джозефом Томсоном электрона. Шустер очень хотел, чтобы в природе торжествовала симметрия. Электрон, как известно, - это отрицательно заряженная частица (тут, правда, следует оговориться, что решение, какой заряд называть положительным, а какой отрицательным, было результатом соглашения; ученые могли договориться и об обратном обозначении знаков зарядов, и ничего от этого не поменялось бы), и Шустер предположил существование симметричного аналога электрона, заряженного положительно и названного им антиэлектроном. Из его гипотезы сразу следовала идея существования антиатомов и антиматерии, откуда можно электрическим полем вытягивать придуманные им антиэлектроны в антиэксперименте анти-Томсона. В течение нескольких лет Шустер пытался убедить в правомерности своей догадки окружающих ученых («Почему бы не существовать отрицательно заряженному золоту, такому же желтому, как наше», - писал он в своей статье в журнале Nature ), однако никто его аргументам не внял. Утвердившийся за много веков научный прагматизм подсказывал, что верить следует только эксперименту, а все, что экспериментом не подтверждается, - ненаучная фантазия. А эксперимент тогда неумолимо утверждал, что отрицательно заряженные электроны из вещества можно вытащить, а положительно заряженные не наблюдаются.

Идея Шустера была забыта, и антиматерию переоткрыл Поль Дирак лишь спустя 30 лет. Сделал он это тоже гипотетически, но был гораздо убедительней Шустера, показав, что существование антиматерии решает множество накопившихся нерешенных к этому моменту проблем. Прежде чем перейти к идеям Дирака, нам придется вспомнить, к каким новым выводам пришла физика за эти 30 лет.

2. Создание атома Нильсом Бором

В начале XX века возникла потребность переосмыслить законы физики. Сначала натолкнулись на невозможность описать спектр абсолютно черного тела, используя лишь законы Ньютона и Максвелла, а чуть позже выяснили, что классические законы не позволяют описать атом. Согласно химикам, атом неделим, и они со своей точки зрения абсолютно правы, поскольку во всех химических реакциях атомы просто «переезжают» из одной молекулы в другую, но, наверное, можно простить кощунство физиков, пожелавших этот атом сначала разложить на составляющие, а потом собрать согласно строгим законам физики. К 1913 году разложить атом получилось неплохо: ни у кого тогда уже не возникало сомнения, что, например, простейший атом водорода состоит из положительно заряженного протона, экспериментально открытого Резерфордом чуть позже, и электрона. Казалось бы, все необходимое для сборки атома есть: помимо протона и электрона, есть электрическая сила притяжения между ними, которая должна держать их вместе. Собрать атом получилось, а сохранять его долго в стабильном состоянии - нет: электрон неумолимо падал на протон и не желал оставаться на заданной орбите. Починить эту систему удалось Нильсу Бору, отказавшемуся ради этого от классических законов механики для описания систем на расстояниях порядка размера атома. Вернее, Бору пришлось отказаться от представления об электроне как о маленьком твердом заряженном шарике и представить его как рыхлое облако, а для его описания потребовалось создать новый математический аппарат, разработанный многими выдающимися физиками начала XX столетия и получивший название «квантовая механика».

К середине 1920-х годов квантовая механика, пришедшая на смену механике классической, когда требовалось описывать что-то очень маленькое, уже прочно утвердилась. Уравнение Шредингера, в самой основе которого лежат квантовые идеи, успешно описывало очень многие эксперименты, например эксперимент со спектром водородной лампы (разогретый водород светит не просто белым светом, а небольшим количеством спектральных линий), помещенной в магнитное поле, в котором каждая линия немножко расщепляется еще на несколько линий.

3. Проблема отрицательных энергий

К моменту, когда в квантовую механику безоговорочно поверили, сформировалась и другая теория - (релятивистская механика), которая работает с очень большими скоростями. Когда скорости тел сравнимы со скоростью света, законы механики Ньютона также необходимо подправить. Ученые попытались скрестить два предельных случая: большие скорости (теория относительности) и очень маленькие расстояния (квантовая механика). Оказалось, что ничего сложного нет в том, чтобы написать уравнение, удовлетворяющее и квантовой механике, и теории относительности. Обобщение уравнения Шредингера на случай релятивистских систем было предложено независимо Клейном, Гордоном и Фоком (последний - наш соотечественник). Вот только решения этого уравнения нас не очень устраивали. Один из парадоксов с решениями - парадокс Клейна: для очень быстрых частиц, ударяющихся о высокий барьер, от которого, по идее, они должны отражаться, вероятность перескочить барьер, согласно этому уравнению, только увеличивается с его высотой - вывод, противоречащий здравому смыслу.

Еще одна несуразность релятивистского уравнения состояла в том, что среди решений уравнения возникали частицы с отрицательными энергиями. Что в этом страшного? Представьте, что с помощью квантовой механики мы обустроили наш мир. В нем, казалось, есть пол, на котором можно устойчиво стоять, и мы наводим уют: развешиваем по стенкам картинки, ставим книжки на полки. Все наши украшения точно подчиняются квантовой механике, они все обладают положительной энергией, а если мы что-то плохо повесили - упадут на пол. Вот только, пытаясь улучшить квантовую механику, сделать ее более правильной, мы обнаружили, что никакого пола в нашем мире нет. Вместо пола - зияющая пропасть (отрицательные энергии), куда все должно провалиться. Надо отдать должное выдержке физиков того времени: они не испугались, что мир развалится на глазах, а попытались эту проблему решить.

Разрешить проблему удалось Полю Дираку, который взялся описать частицу, более сложную, чем ту, что описывает уравнение Клейна - Гордона - Фока, - электрон. Электрон нельзя описать одной функцией, надо брать сразу две, причем эту пару нельзя разделить, и приходится писать систему уравнений. Казалось бы, задача только усложнилась (и с первого взгляда это усложнение не решает главной проблемы), но Дирак попытался довести решение до конца. Для электронов работает принцип Паули, который утверждает, что два электрона нельзя поместить в одно состояние: никакими усилиями второй электрон не втиснуть в уже занятое. Дирак, берясь за эту задачу, по-видимому, надеялся воспользоваться именно этим свойством: если ниже уровня пола все состояния уже заполнены электронами, то и проваливаться будет некуда. Казалось бы, задача безнадежная: надо залить электронами бездну бесконечной глубины. А Дирак лишь пожимал плечами: «А зачем нам об этом беспокоиться? Будем считать, что об этом уже позаботилась природа (а она всесильна), все уже залито, и пол наш есть». Таким образом, проблема отрицательных энергий разрешилась!

4. Антиматерия

Однако, записывая свое уравнение, Дирак натолкнулся на новую проблему: оказывается, для релятивистского описания электрона двух функций недостаточно, придется писать четыре! Что же собой представляют эти две лишние функции для электрона? Немного подумав, Дирак сообразил, что на нашем залитом полу могут образовываться пузырьки - дырки (природа, конечно, всесильна, но может позволить себе быть не совсем безупречной и допустить некоторые дефекты). Удивительным образом такой пузырек ведет себя точно так же, как электрон, по аналогии с пузырьком похожий на капельку, висящую над полом: у них одинаковая масса, оба они заряжены. Висящая капелька имеет положительную энергию и заряжена отрицательно, собственно, это и есть наш электрон. А пузырек (в подпольном мире) тоже обладает положительной энергией, но знак заряда у него обратный - это антиэлектрон (или позитрон). Для его описания и понадобились две лишние функции.

Дирак был окрылен своим открытием. Он был убежден, что античастицы реальны, хотя их никогда до этого и не наблюдали в эксперименте. Открыли античастицы несколькими годами позже, а к идее Дирака, несмотря на явный успех его теории (заметим, что античастицы разрешили и парадокс Клейна), коллеги относились скептически. Дирак же в свою теорию, видимо, верил безоговорочно. Пытаясь найти ответ на критику ненаблюдаемости позитронов, он довольно быстро сообразил, что позитроны жить вместе с нами не могут. Если бы они возникли где-то рядом с нами, то немедленно аннигилировали бы с окружающими электронами. Поэтому он вполне разумно предположил, что если уж наша Солнечная система устроена из электронов и вообще из частиц, то здесь не место античастицам, их надо искать в других галактиках, не соприкасающихся с нашей. Сейчас мы верим, что, скорее всего, антигалактик не существует: причина в том, что антиматерия немного отличается от материи.

Придуманные Дираком позитроны были вскоре открыты Карлом Андерсоном в . Они рождались из энергичных космических фотонов в паре с электронами, но перед последующей аннигиляцией успевали пролететь некоторое расстояние и оставить следы. Интересно, что позитрон мог быть открыт на 5 лет раньше выдающимся российским физиком Дмитрием Скобельциным, который позитрон увидел, только сам не смог поверить в свое открытие. Античастицы должны быть у всех частиц, за исключением истинно нейтральных, таких как фотон (для фотона античастица является им же самим), и сегодня все они открыты. Только видим мы их в специальных экспериментах. Поэтому часто антиматерию воспринимают как совершенно абстрактное, возможно, красивое, но непонятно зачем придуманное понятие. Действительно, все, что обсуждалось ранее, - только факт существования античастиц, а в окружающей нас природе их ведь почти нет, и что толку, даже если их научились получать в лабораториях? Но не торопитесь с выводами! Мы уже научились не только получать античастицы, но и использовать их для наших нужд.

5. Применение антиматерии

На нашей повседневной жизни антиматерия вроде бы не сказывается. Тем не менее сегодня мы применяем для некоторых вполне практичных задач по крайней мере самую распространенную и относительно легко получаемую античастицу - позитрон. Одно из применений позитроны нашли в медицине для . Существуют радиоактивные ядра, испускающие позитроны, которые, вылетев из ядра, мгновенно аннигилируют с электронами из соседних атомов, превращаясь в два фотона. Пациент принимает небольшое количество аналога глюкозы с радиоактивной примесью (доза очень маленькая и не наносит вреда здоровью), глюкозоподобное вещество накапливается в активно растущих клетках, каковыми и являются раковые клетки. Именно в опухоли и будет происходить частая электрон-позитронная аннигиляция, а найти точное место в организме, откуда часто вылетают фотоны, остается технической задачей, причем это делается бесконтактно: вокруг пациента проезжает сканирующий прибор, улавливающий фотоны. Этот метод, позволяющий диагностировать и точно определять местоположение опухоли, называется позитронно-эмиссионной томографией.

Позитроны используются также в материаловедении. С помощью специального позитронного микроскопа, стреляющего позитронами по изучаемому объекту, можно исследовать поверхности полупроводников для их применения в электронике. А можно просто изучать образцы каких-либо материалов, определять «усталость» материалов и находить в них микродефекты. Так что эта, казалось бы, совершенно абстрактная область знания служит вполне конкретным интересам людей.

Антивещество – это материя, состоящая исключительно из античастиц. В природе у каждой элементарной частицы есть античастица. Для электрона это будет позитрон, а для положительно заряженного протона – антипротон. Атомы обычного вещества – иначе оно называется койновещество - состоят из положительно заряженного ядра, вокруг которого движутся электроны. А отрицательно заряженные ядра атомов антивещества, в свою очередь, окружены антиэлектронами.

Силы, которые определяют структуру материи, и для частиц и для античастиц одинаковы. Проще говоря, частицы различаются только знаком заряда. Характерно, что «антивещество» - не совсем верное название. Оно по сути своей лишь разновидность вещества, обладающее теми же свойствами и способное на создание притяжения.

Аннигиляция

Фактически это процесс столкновения позитрона и электрона. В результате происходит взаимоуничтожение (аннигиляция) обеих частиц с выделением огромной энергии. Аннигиляция 1 грамма антивещества эквивалентна взрыву тротилового заряда в 10 килотонн!

Синтез

В 1995 году было заявлено, что синтезированы первые девять атомов антиводорода. Они прожили 40 наносекунд и погибли, высвободив энергию. А уже в 2002 году число полученных атомов исчислялось сотнями. Но все полученные античастицы могли прожить только наносекунды. Дело изменилось с запуском адронного коллайдера: удалось синтезировать 38 атомов антиводорода и удержать их целую секунду. За этот период времени стало возможным провести некоторые исследования строения антиматерии. Удерживать частицы научились после создания специальной магнитной ловушки. В ней, для достижения нужного эффекта, создаётся очень низкая температура. Правда, такая ловушка – дело очень громоздкое, сложное и дорогое.

В трилогии С. Снегова «Люди как боги» процесс аннигиляции используется для межгалактических полётов. Герои романа, используя её, превращают в пыль звёзды и планеты. Но в наше время получить антивещество гораздо сложнее и дороже, чем прокормить человечество.

Сколько стоит антивещество

Один миллиграмм позитронов должен стоить 25 млрд. долларов. А за один грамм антиводорода придётся выложить 62,5 триллиона долларов.

Ещё не проявился такой щедрый человек, что смог бы купить хоть одну сотую грамма. Несколько сот миллионов швейцарских франков пришлось заплатить за одну миллиардную долю грамма, чтобы получить материал для экспериментальных работы по столкновению частиц и античастиц. Пока нет такой субстанции в природе, которая была бы дороже антивещества.

А вот с вопросом веса антиматерии всё достаточно просто. Поскольку она отличается от материи обычной только зарядом, то все остальные характеристики у неё те же. Получается, что один грамм антивещества будет весить именно один грамм.

Мир из антивещества

Если принять за истину, что был, то в результате этого процесса должно было возникнуть равное количества и вещества, и антивещества. Так почему же мы не наблюдаем рядом с собой объектов, состоящих из антиматерии? Ответ достаточно прост: два типа вещества не могут сосуществовать вместе. Они обязательно взаимоуничтожатся. Вполне вероятно, что галактики и даже вселенные из антивещества существуют , и мы даже видим некоторые из них. Но от них исходят такие же излучения, идёт такой же свет, как и от обычных галактик. Поэтому пока невозможно точно утверждать, существует антимир или это красивая сказка.

Опасно ли?

Многие полезные открытия человечество превращало в средства уничтожения. Антивещество в этом смысле не может быть исключением. Более мощного оружия, чем основанного на принципе аннигиляции, представить пока нельзя. Возможно, не так и плохо, что пока не получается добыть и сохранить антивещество? Не станет ли оно роковым звоночком, который услышит человечества в свой последний день?

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные