Удельный расход теплоты на отопление. Удельный расход тепловой энергии на отопление здания: общие понятия

1.1.1.Расчетные максимального расхода теплоты (Вт) на отопление жилых, общественных и административных зданий определяют по укрупненным показателям

= q o ∙ V (t в t н.р.),


=1.07∙0.38∙19008(16-(-25))=239588.2

Где q о  удельная отопительная характеристика здания при t н.р. = 25С (Вт/м  С);

  поправочный коэффициент, учитывающий климатические условия района и применяемый в тех случаях, когда расчетная температура наружного воздуха, отличается от  25С, V объем здания по наружному обмеру, м 3 ; t в расчетная температура воздуха внутри отапливаемого здания, t н.р.  расчетная температура наружного воздуха для проектирования отопления, С, см. Прилож.2.



Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

      1.1.2.Средний тепловой поток (Вт) на отопление







Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Где t н.р.ср.  расчетная средняя температура наружного воздуха для проектирования отопления, С (приложение 2).

1.2.Определение расхода теплоты на вентиляцию.

1.2.1Максимальный расход теплоты на вентиляцию, Q в max , Вт

Q в max = q в  V   (t в  t н.в.)

Q в max =1,07190080,29(16-(-14))

Где q в  удельная характеристика здания для проектирования системы вентиляции.

1.2.2.Средний расход теплоты на вентиляцию, Q в ср, Вт

Q в ср = Q в max 

Q в ср =176945,5 

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

1.3. Определение расхода теплоты на горячее водоснабжение.

1.3.1 Средний расход тепла на горячее водоснабжение промышленных зданий, Q ср г.в.с., Вт

Q г.в.с. ср =

где   норма расхода горячей воды (л/сут) на единицу измерения (СниП 2.04.01.85),

m  количество единиц измерений;

c  теплоемкость воды С = 4187 Дж/кг  С;

t г, t х  температура горячей воды, соответственно подаваемой в систему горячего водоснабжения и холодной воды, С;

h  расчетная длительность подачи тепла на горячее водоснабжение, С/сутки, ч/сутки.

1.3.2 Средний расход теплоты на горячее водоснабжение жилых и общественных зданий, Q г.в.с., Вт


Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

где m  число человек,

  норма расхода воды на г.в.с. при температуре 55 С на одного человека в сутки (СНиП 2.04.0185, приложение3)

в  норма расхода воды на горячее водоснабжение принимаемая 25 л/сутки на 1 человека;

t х  температура холодной воды (водопроводной) в отопительный период (при отсутствии данных принимается равной 5С)

с  теплоемкость воды, С = 4,187 кДж/(кгС)

1.3.3.Максимальный расход теплоты на горячее водоснабжение,

,Вт



134332,9

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Таблица 2.1

Наименование потребителей

Объем, V, тыс.м 3

Колво проживающих m, человек

Удельная характеристика здания, Вт/м С

Норма расхода горячей воды, а, л/сут.

3. Котельная

4. Общага

5. 9 этажный дом 1

6. 9 этажный дом 2

7. Аптека

8. Поликлиника

Температура внутри помещения, t в

Расчетная температура

Расход теплоты

Суммарный расход теплоты, Q, Вт.

для отоп ления

для вентиляции

на отопление

на вентиляцию









1. Школа +16

2.Дет. сад +20

3. Котельная +16

4. Общага +18

5. 9 этажный дом 1 +18

6. 9 этажный дом 2 +18

7. Аптека +15

8. Поликлиника +20

1.3.4. Годовые расходы тепла жилыми и общественными зданиями

а) На отопление


;

б) На вентиляцию


;

в) На горячее водоснабжение


где n о, n r – соответственно продолжительность отопительного периода и длительность работы системы горячего водоснабжения в сек/год, (час/год).

Обычно n r = 30,2·10 5 с-год (8400ч/год);

t r – температура горячей воды.

г) Суммарный годовой расход тепла на отопление, вентиляцию и горячее водоснабжение

Что это такое — удельный расход тепловой энергии на отопление здания? Можно ли своими руками подсчитать часовой расход тепла на отопление в коттедже? Эту статью мы посвятим терминологии и общим принципам расчета потребности в тепловой энергии.

Основа новых проектов зданий — энергоэффективность.

Терминология

Что это такое — удельный расход тепла на отопление?

Речь идет о количестве тепловой энергии, которую необходимо подвести внутрь здания в пересчете на каждый квадратный или кубический метр для поддержания в нем нормированных параметров, комфортных для работы и проживания.

Обычно проводится предварительный расчет потерь тепла по укрупненным измерителям, то есть исходя из усредненного теплового сопротивления стен, ориентировочной температуры в здании и его общего объема.

Факторы

Что влияет на годовой расход тепла на отопление?

  • Продолжительность отопительного сезона (). Она, в свою очередь, определяется датами, когда среднесуточная температура на улице за последнюю пятидневку опустится ниже (и поднимется выше) 8 градусов по шкале Цельсия.

Полезно: на практике при планировании запуска и остановки отопления учитывается прогноз погоды. Длительные оттепели бывают и зимой, а заморозки могут ударить уже в сентябре.

  • Средние температуры зимних месяцев. Обычно при проектировании отопительной системы в качестве ориентира берется среднемесячная температура самого холодного месяца — января. Понятно, что чем холоднее на улице — тем больше тепла здание теряет через ограждающие конструкции.


  • Степень теплоизоляции здания очень сильно влияет на то, какой будет норма тепловой мощности для него. Утепленный фасад способен снизить потребность в тепле вдвое относительно стены из бетонных плит или кирпича.
  • Коэффициент остекления здания. Даже при использовании многокамерных стеклопакетов и энергосберегающего напыления через окна теряется заметно больше тепла, чем через стены. Чем большая часть фасада остеклена — тем больше потребность в тепле.
  • Степень освещенности здания. В солнечный день поверхность, сориентированная перпендикулярно солнечным лучам, способна поглощать до киловатта тепла на квадратный метр.

Уточнение: на практике точный расчет количества поглощаемого солнечного тепла будет крайне сложным. Те самые стеклянные фасады, которые в пасмурную погоду теряют тепло, в солнечную послужат обогреву. Ориентация здания, наклон кровли и даже цвет стен — все эти факторы повлияют на способность к поглощению солнечного тепла.


Расчеты

Теория теорией, но как на практике рассчитываются расходы на отопление загородного дома? Можно ли оценить предполагаемые затраты, не погружаясь в пучину сложных формул теплотехники?

Расход необходимого количества тепловой энергии

Инструкция по подсчету ориентировочного количества необходимого тепла сравнительно проста. Ключевое словосочетание — ориентировочное количество: мы ради упрощения расчетов жертвуем точностью, игнорируя ряд факторов.

  • Базовое значение количества тепловой энергии — 40 ватт на кубометр объема коттеджа.
  • К базовому значению добавляется 100 ватт на каждое окно и 200 ватт на каждую дверь в наружных стенах.


  • Далее полученное значение умножается на коэффициент, который определяется усредненным количеством потерь тепла через внешний контур здания. Для квартир в центре многоквартирного дома берется коэффициент, равный единице: заметны лишь потери через фасад. Три из четырех стен контура квартиры граничат с теплыми помещениями.

Для угловых и торцевых квартир берется коэффициент 1,2 — 1,3 в зависимости от материала стен. Причины очевидны: внешними становятся две или даже три стены.

Наконец, в частном доме улица не только по периметру, но и снизу, и сверху. В этом случае применяется коэффициент 1,5.

Обратите внимание: для квартир крайних этажей в том случае, если подвал и чердак не утеплены, тоже вполне логично использовать коэффициент 1,3 в середине дома и 1,4 — в торце.

  • Наконец, полученная тепловая мощность умножается на региональный коэффициент: 0,7 для Анапы или Краснодара, 1,3 для Питера, 1,5 для Хабаровска и 2,0 для Якутии.


В холодной климатической зоне — особые требования к отоплению.

Давайте посчитаем, сколько тепла нужно коттеджу размером 10х10х3 метра в городе Комсомольск-на-Амуре Хабаровского края.

Объем здания равен 10*10*3=300 м3.

Умножение объема на 40 ватт/куб даст 300*40=12000 ватт.

Шесть окон и одна дверь — это еще 6*100+200=800 ватт. 1200+800=12800.

Частный дом. Коэффициент 1,5. 12800*1,5=19200.

Хабаровский край. Умножаем потребность в тепле еще в полтора раза: 19200*1,5=28800. Итого — в пик морозов нам потребуется примерно 30-киловаттный котел.

Расчет затрат на отопление

Проще всего рассчитывается расход электроэнергии на отопление: при использовании электрокотла он в точности равен затратам тепловой мощности. При непрерывном потреблении 30 киловатт в час мы будем тратить 30*4 рубля(примерная текущая цена киловатт-часа электричества)=120 рублей.

К счастью, реальность не столь кошмарна: как показывает практика, усредненная потребность в тепле примерно вдвое меньше расчетной.

  • Дрова — 0,4 кг/КВт/ч. Таким образом, ориентировочные нормы расхода дров на отопление будут в нашем случае равными 30/2(номинальную мощность, как мы помним, можно делить пополам)*0,4=6 килограмм в час.
  • Расход бурого угля в пересчете на киловатт тепла — 0,2 кг. Нормы расхода угля на отопление вычисляются в нашем случае как 30/2*0,2=3 кг/час.


Бурый уголь — сравнительно недорогой источник тепла.

  • Для дров — 3 рубля (стоимость килограмма)*720(часов в месяце)*6(ежечасный расход)=12960 рублей.
  • Для угля — 2 рубля*720*3=4320 рублей (читайте и другие ).

Заключение

Дополнительную информацию о и методиках расчетов затрат вы сможете, как обычно, найти в прикрепленном к статье видео. Теплых зим!

Расчет потребления тепла на отопление. Отопление является наиболее крупным потребителем тепла. Длительность потреб­ления тепла на нужды отопления соответствует продолжитель­ности отопительного периода, т. е. числу суток с устойчивой среднесуточной температурой наружного воздуха t н, ниже ус­тановленного предела. Например, по Строительным нормам и правилам СНиП II-A. 6-72 «Строительная климатология и гео­физика. Нормы проектирования» такому пределу соответствует температура наружного воздуха, равная +8°С. Как только эта температура становится ниже или выше указанного предела, то соответственно включают или выключают систему отопления.

Расход тепла на отопление зависит не только от климати­ческих условий, но и от конструктивных характеристик здания и его расположения.

Обеспечение тепловой энергией зда­ний производится для поддержания в них заданного темпера­турного режима. В этом случае предполагается, что тепловая энергия полностью компенсирует теплопотери - трансмиссион­ные и от инфильтрации. При заданных ограждающих конструк­циях трансмиссионные теплопотери определяются в основном температурой наружного воздуха t н теплопотери от инфильтра­ции, кроме того, скоростью ветра и влажностью воздуха. Таким образом, изменение расхода тепла обратно пропорционально изменению t н и прямо пропорционально изменению скорости ветра и влажности воздуха. Минимальный расход тепла соответствует началу отопительного периода. По мере снижения t н потребность в тепле возрастает и становится максимальной при минимальной t н.

Комплексная и параллельная разработка всех частей проек­та приводит к необходимости предварительной оценки общих теплопотерь зданиями. При этом используют, как правило, метод приближенного расчета по укрупненным измерителям. Для трансмиссионных теплопотерь укрупнённым измерителем явля­ется удельная тепловая отопительная характеристика здания q o .Она представляет собой количество тепла, необходимое для компенсации теплопотерь одним кубическим метром здания в единицу времени при разности температур в один градус между воздухом в помещении t вн и наружным t н. Удельная харак­теристика q o изменяется обратно пропорционально объёму зда­ния. Для некоторых зданий она приведена в табл. 1.

Для расчета теплопотерь от инфильтрации такого измерите­ля нет. На практике приближенную их величину при определе­нии трансмиссионных теплопотерь учитывают соответствую­щим коэффициентом, который зависит от многих факторов: вы­соты и объема помещений, расположения и площади проемов, количества щелей в ограждающих конструкциях и величины их раскрытия, а также температуры наружного воздуха, скорости и направления ветра. На основании практических данных указанный коэффициент может быть принят равным: для общественных здании 0,1-0,3; для промышленных зданий при наличии одинарного остекления и без специальных уплотнений притворов дверей и ворот, а также для крупных общественных зданий - 0,3-0,6; для крупных цехов, имеющих большегабаритные ворота, - 0,5-1,5 и даже 2.



Таблица 1.

Средняя температура воздуха в зданиях и удельные тепловые характеристики зданий заданного объёма.

Продолжение таблицы 1.

Для жилых и общественных зданий максимальный расход тепла на отопление можно определить по укрупненному показателю, отнесенному одному квадратному метру жилой площади. Этим показателем удобно пользоваться в том случае, когда известно лишь количество жилой площади, намечаемое к вводу к эксплуатацию в заданном районе. Максимальный часовой расход тепла на отопление жилых зданий, приходящийся на 1 м 2 жилой площади при температурах наружного воз­духа 0, -10, -20, -30, -40 о С соответственно равен: 90; 130; 150; 175; 185 Вт/м 2 . При этом расход тепла на отопление общественных зданий принимают в размере 25% расхода тепла для жилых.

Максимальный расчетный расход тепла Q o , Вт, на отопление при установившемся тепловом режиме здания, отнесенный к его объему и разности температур, определяют по формуле

где - коэффициент, учитывающий теплопотери от инфильтрации; - удельная отопительная характеристика здания, Вт/(м 3 ·К); - поправочный коэффициент к отопительной характеристике на наружную температуру воздуха; с некоторым округлением можно определять по формуле ; - объём здания по наружному обмеру без подвала, м 3 ; - средняя температура воздуха в отапливаемом здании, о С; - температура наружного воздуха, о С: при проектировании отопления принимается по климатологическим данным как средняя наиболее холодных пятидневок из восьми зим за 50-летний период.

Температура воздуха в помещении задается либо санитар­ными нормами, либо технологическими процессами с учетом требований санитарных норм. Значения средней температуры воздуха в некоторых зданиях приведены в табл.1.

Рис.1. Графики расхода тепла на нужды отопления а - часовой; б - сезонный

Формулу (1) можно использовать для определения часового расхода тепла в любой период отопительного сезона, подставляя значение t н, соответствующее этому периоду. Так, напри­мер, начало отопительного сезона характеризуется минималь­ными затратами тепловой энергии. В этот момент расчетная температура наружного воздуха наиболее высокая, t н =8 о С.

Как следует из формулы (1), изменение расхода тепла при изменении t н имеет линейную зависимость. Чтобы знать характер изменения в течение всего сезона, достаточно опреде­лить расходы тепла при максимальном t н и минимальном значениях t н.о. . Обычно такое изменение представляют графически (рис. 1). На рис.1а на оси абсцисс отложены значения температуры наружного воздуха, на оси ординат-расходы тепла. Точки А и Б соответствуют максимальному и минималь­ному расходам тепла. Линия АБ - линейная зависимость - из­менение часового расхода тепла в течение холодного периода. По такому графику можно определить часовой расход тепла на отопление при любом значении £н в указанных пределах. Для этого необходимо из точки заданного значения t н на оси абсцисс восставить перпендикуляр до пересечения с линией АБ. Точка пересечения будет соответствовать искомому расходу тепла. Так, на рис. 1а пунктирной линией показано опреде­ление среднечасового расхода тепла при средней темпе­ратуре наружного воздуха за отопительный период .

В промышленных цехах, а также в ряде общественных зда­ний во время перерыва в работе, а также в выходные, и праздничные дни, не требуется поддерживать температуру в помещении t в.н, на заданном уровне и соответственно затрачивать мак­симальное количество тепла. В это время температура возду­ха в помещении снижается до +5°С и обеспечивается специаль­ным дежурным отоплением. Часовой расход тепла в этот период можно определить по формуле (1), принимая . Пре­дел снижения диктуется условиями надежной эксплуатации сооружений. Сокращение расхода тепла за этот период учиты­вают при определении годовой потребности.

В заданном климатическом районе годовой расход тепла оп­ределяют по числу суток в отопительном периоде и по значени­ям за каждые сутки или по средней t н за весь рассматривае­мый период. Степень равномерности потребления тепла здани­ем по суткам и за неделю выявляют в зависимости от режима работы предприятия.

Годовую потребность в тепловой энергии, МВт, для отоп­ления административных и промышленных зданий с учетом ее снижения во внерабочее время, а также в выходные и пред­праздничные дни определяют по выражению

где - число часов работы предприятия в сутки; - число суток в отопительном периоде; - сумма выходных и праздничных дней в отопительном периоде; - температура наружного воздуха, средняя за отопительный период, о С; 24 -число часов в сутках; температура воздуха в здании в нерабочее время, о С.

Для зданий с равномерным потреблением тепла в течение суток, например, жилых и некоторых общественных с круглосуточным режимом работы, формула (2) упрощается, так как =0, =24,

Для обеспечения эксплуатационного режима работы теплоснабжающих устройств определяют изменение отопительной нагрузки во времени в течение всего отопительного периода. Наиболее целесообразно годовое потребление тепла во времени представлять графически - рис. 1б , где на оси абсцисс от­ложены последовательно с нарастающим итогом часы стоя­ния одинаковых температур , начиная с минимальных, а по оси ординат - расход тепла, соответствующий этим температу­рам.

Для конкретного объекта построение трафика начинают е выявления числа часов стояния одинаковых температур . Затем по формуле (1) с учетом возможного снижения потребления тепла во внерабочее время рассчитывают требуемый расход тепла. Полученные результаты наносят на координатную сетку графика, откладывая их на перпендикулярах, восставленных на оси абсцисс в точках изменения наружных температур. Из то­чек расхода тепла, отложенных на перпендикулярах, проводят линии, параллельные оси абсцисс, длиной, равной числу стоя­ния одинаковых температур. Правые верхние углы образовав­шихся прямоугольников соединяют плавной кривой. Эта кри­вая характеризует потребление тепла для отопления данного объекта и является основой для разработки режима работы системы теплоснабжения.

График расхода тепла в течение года можно построить, ис­пользуя график часовых расходов. Для этого часовые расходы переносят на ординаты, соответствующие наружным температурам годового графика. Точки пересечения часовых расходов тепла с ординатами, соответствующими предельным значениям температур в заданном интервале, соединяют плавной кри­вой. Площадь, ограниченная осью абсцисс, максимальной и ми­нимальной ординатами и плавной кривой (см. рис.1б кри­вая A 1 Б 1) пропорциональна годовому расходу тепла. При сред­ней температуре за отопительный период форма годового графика условно будет иметь вид прямоугольника, в котором ордината соответствует среднечасовому расходу теп­ла (см. пунктирную линию на рис. 1б ).

II.1.2. Расчет потребления тепла на вентиляцию

В системах вен­тиляции тепло затрачивается на подогрев свежего приточного воздуха до заданной температуры. Расход тепла , Вт, опре­деляется количеством, температурой и влажностью подогревае­мого воздуха

где - теплоемкость воздуха, кДж/(кг·К); - плотность воздуха, кг/м 3 ; V- объем приточного воздуха, м 3 /ч; и - температура воздуха за на­гревателем и перед ним, о С; 1/3,6 - теплоэнергетический эквивалент для пере­вода кДж/ч в Вт, т. е, теплоты, Дж, в тепловую энергию, расходуемую в единицу времени, Вт.

Объем приточного воздуха соответствует объему удаляемого. Это равенство является основным правилом при решении воз­душного баланса помещения. Объем удаляемого воздуха рассчитывают из условия обеспечения воздушной среды, отвечаю­щей требованиям санитарных норм, по количеству вредных вы­делений (пыль, газы, аэрозоль, влага и т. п.) в помещении. Кроме того, на объем удаляемого воздуха влияет принятый способ воздухообмена.

Организация воздухообмена в помещений решается в основном одним из двух вариантов. Там, где вредные выделения можно удалить непосредственно на месте их образования, осу­ществляют наиболее эффективную местную вентиляцию, В этом случае объем удаляемого воздуха становится минимальным, так как вентилируется только ограниченная рабочая зона в помещении. При этом расход тепла рассчитывают по формуле (4).

Если вредные выделения распространяются по всему объему, применяют общеобменную вентиляцию, создающую в по­мещении требуемые условия воздушной среды путем разбавле­ния вредных выделений чистым приточным воздухом. Воздухо­обмен, основанный на этом принципе, требует наибольшего объема вентилируемого воздуха, а следовательно, и наиболь­шего расхода тепла.

При разработке системы теплоснабжения расход тепла да нужды общеобменной вентиляции оценивают аналогично отоп­лению, как правило, по укрупненным измерителям. Таким из­мерителем является удельная тепловая вентиляционная харак­теристика , отнесенная к объему здания. Она представляет со­бой количество тепла, необходимое для вентиляции 1 м 3 здания в единицу времени при перепаде температур 1 о.

Используя удельную характеристику, расход тепла на нуж­ды общеобменной вентиляции , Вт, отнесенный к объему зда­ния, определяют по формуле

где - удельная вентиляционная характеристика здания, Вт/(м 3 ·К); - температура наружного воздуха, °С; при проектировании вентиляции прини­мается по климатологическим данным как средняя за наиболее холодный пе­риод, составляющий 15% в отопительном сезоне.

Для некоторых зданий массового строительства значение вентиляционной характеристики указано в табл. 1.

Удельную вентиляционную характеристику можно опреде­лить также по кратности обмена и объему вентилируемого по­мещения

где m - кратность обмена, представляющая собой отношение количества при­точного воздуха, подаваемого в единицу времени в 1 ч, к объему вентилируе­мого помещения.

Кроме того, максимальный расход тепла на нужды общеоб­менной вентиляции общественных зданий определяют по укрупненному показателю для районов, где известно лишь коли­чество жилой площади, намечаемое к строительству. Этот по­казатель относят к 1 м 2 жилой площади и в зависимости от температуры наружного воздуха при 0, -10, -20, -30 и 40 о С принимают соответственно равным: 9; 13; 15; 17,5 и 18,5 Вт/м 2 .

Температура наружного воздуха, принимаемая при расчете тепла на вентиляцию, не является одинаковой для всех поме­щений. Она зависит от принятого способа воздухообмена. При расчете местной вентиляции ее берут равной, как и для отопления, т. е, . Значение этой температуры при общеоб­менной вентиляции выше, чем при отоплении. Здесь она опре­деляется как средняя за наиболее холодный период продолжи­тельностью, равной 15% отопительного сезона. Допустимое по­вышение уровня при температурах наружного воздуха наи­более холодного периода обусловлено возможностью увеличе­ния рециркуляции воздуха. В период пониженных наружных температур требуемая температура приточного воздуха дости­гается путем подмешивания к наружному более теплого возду­ха, забираемого из вентилируемого помещения. Благодаря это­му уменьшается объем приточного свежего воздуха, поступаю­щего на подогрев, и соответственно сокращается потребность в тепловой энергии на нужды общеобменной вентиляции. Следует отметить, что указанное повышение , обусловленное сниже­нием потребности в тепловой энергии в часы ее максимального расхода, допускается только для общеобменной вентиляции,и то в тех помещениях, в которых разрешается рециркуляция воздуха. В цехах же, где по характеру вредных выделений ре­циркуляция воздуха не допускается, за расчетную температуру принимают отопительную независимо от принятого способа воз­духообмена, т. е. .

Расход тепла на вентиляцию, так же как и на отопление, за­висит от наружной температуры. При местной и общеобменной вентиляции без рециркуляции воздуха эта зависимость анало­гична отопительной (рис.2а , линия АВ).

При общеобменной вентиляции с рециркуляцией воздуха аналогия наблюдается только в диапазоне наружных температур от +8 до t н.в. (линия БВ). При дальнейшем снижении тем­пературы наружного воздуха, т. е. когда t н. t н.в. , расход тепла не изменяется и сохраняется на уровне t н.в. течение всего наи­более холодного периода, линия расхода ГБ параллельна оси абсцисс.

Годовой расход тепла на вентиляцию, МВт определяют на основании часового при соответствующем способе воздухообмена в зависимости от числа часов работы системы вентиляции.

При общеобменной вентиляции с рециркуляцией воздуха: с перерывами работы в течение суток и в выходные дни

Если имеются сведения о продолжительности умеренно хо­лодного периода (для некоторых городов см. табл.2), то расчеты по формулам (7) - (10) значительно упрощаются.

Режим работы системы вентиляции разрабатывают на основании годового графика потребления тепла. Построение этого графика (рис.2б ) производится аналогично отопительному для систем вентиляции без рециркуляции воздуха. Для общеобменной вентиляции имеется особенность. Здесь график разделен на две части: первая (левая) - соответствует наиболее холод­ному периоду и имеет постоянный расход тепла в течение это­го периода. Линия Г 1 Б 1 параллельна оси абсцисс, расход тепла определяется площадью прямоугольника О - Г 1 – Б 1 – 0,15 n o . Вторая часть, соответствующая умеренно холодному периоду, имеет переменный расход тепла - линия Б 1 В 1 .

Таблица 2.

Средняя температура наружного воздуха и продолжительность умеренно холодного периода в отопительном сезоне

Частный дом можно рассматривать как термодинамическую систему, обладающую внутренней энергией и ведущую теплообмен с окружающей средой. Энергия, которую дом получает или теряет в ходе теплообмена, называют теплотой. Источником теплоты в частном доме является теплогенератор: котел, конвектор, печь, нагревательный элемент и т.д.

Чем интенсивнее идет теплообмен между домом и окружающей средой, тем быстрее «уходит» тепло дома и тем интенсивнее должен работать источник тепловой энергии, компенсирующий потери. Понятно, что интенсивная работа котла сопряжена с большим расходом топлива, что ведет к росту расходов на отопление.

Но не это главное: понятие комфорта в жилище в холодное время года неразрывно связано с теплом в доме, что возможно только при равновесии между потерями тепловой энергии и ее производством.

Однако возможности любого теплогенератора ограничены его конструктивными особенностями. Это значит, что для обеспечения тепла и комфорта в доме котел или иной источник тепловой энергии нужно подбирать в соответствии с тепловыми потерями строения, делая при этом некоторый запас (обычно 20%) на случай ветреной погоды или сильных морозов.

Итак, мы определились: прежде чем выбрать котел для обогрева дома нужно определить его (дома) тепловые потери.

Определяем тепловые потери

Теплопотери здания можно рассчитывать отдельно для каждой комнаты, имеющей внешнюю часть, контактирующую с окружающей средой. Затем полученные данные суммируются. Для частного дома удобнее определять тепловые потери всего строения в целом, считая потери тепла отдельно через стены, кровлю, и поверхность пола.

Следует отметить, что расчет тепловых потерь дома достаточно сложный процесс, требующий специальных знаний. Менее точный, но при этом вполне достоверный результат можно получить на основе онлайн калькулятора расчета тепловых потерь.

При выборе онлайн калькулятора предпочтение лучше отдавать моделям, учитывающим все возможные варианты потери тепла. Вот их перечень:

    поверхность наружных стен

    поверхность кровли

    поверхность пола

    вентиляционная система

Решив воспользоваться калькулятором, необходимо знать геометрические размеры строения, характеристики материалов, из которых сделан дом, а также их толщину. Наличие теплоизоляционного слоя и его толщина учитываются отдельно.

На основании перечисленных исходных данных онлайн калькулятор выдает общее значение тепловых потерь дома. Определить, насколько точные получены результаты можно разделив полученный результат на общий объем здания и получив при этом удельные потери тепла, величина которых должна находиться в интервале от 30 до 100 Вт.

Если цифры, полученные с помощью онлайн калькулятора, выходят далеко за пределы указанных значений, можно предположить, что в расчет закралась ошибка. Чаще всего причиной ошибок в расчетах является несоответствие размерности используемых в расчете величин.

Немаловажный факт: данные онлайн калькулятора актуальны только для домов и строений с качественными окнами и хорошо работающей системой вентиляции, в которых нет места сквознякам и иным потерям тепла.

Для уменьшения потерь тепла можно выполнить дополнительную тепловую изоляцию строения, а также использовать подогрев воздуха, поступающего в помещение.

Тепловые потери знаем, что дальше?

На следующем этапе производится выбор отопительного агрегата (котла). Его тепловая мощность должна превосходить значение тепловых потерь не менее чем на 20%. Если котел используется еще и для горячего водоснабжения, выбирается тепловой агрегат с дополнительным запасом мощности. Для этого необходимо произвести дополнительный расчет, учитывающий потребности в горячем водоснабжении.

Затем подбираются отопительные приборы, суммарная мощность которых должна соответствовать мощности котла отопления без учета горячего водоснабжения.

Гидравлический расчет системы отопления

Подобрав оборудование, необходимо обеспечить его работу. Для этого нужны трубы, циркуляционный насос и расширительный бак отопления.

Если собственник дома решит произвести подбор труб отопления самостоятельно, можно воспользоваться справочной литературой и подобрать требуемый диаметр по таблицам. Протяженность труб рассчитывается по проектной документации. Для этого на схеме строения просто прокладывается дополнительно схема разводки системы отопления и производится подсчет длины трубопровода.

Если схемы дома по какой-либо причине нет, ее придется нарисовать самостоятельно, а затем, с ее помощью, рассчитать протяженность трубопровода.

Зная протяженность трубопровода, диаметр труб и имея технические данные приборов отопления, рассчитывается внутренний объем системы отопления, по которому подбирается расширительный бак и циркуляционный насос.

Правильный гидравлический расчет необходим также для того, чтобы все тепло, вырабатываемое котлом, равномерно распределялось по дому и доходило в полном объеме до потребителя.

Подведем итоги

Количество тепла, необходимое для отопления дома, напрямую зависит от его тепловых потерь. Уменьшить тепловые потери можно с помощью дополнительной тепловой изоляции, установке качественных окон и утепленных дверей, а также при использовании рекуперации в системе вентиляции.

Величина тепловых потерь определяет мощность котла отопления. Суммарная мощность приборов отопления должна быть равна мощности котла. Для обеспечения качественной работы котла и радиаторов производится гидравлический расчет отопления, в ходе которого определяется диаметр труб, их протяженность, внутренний объем отопления. По этим данным подбирается циркуляционный насос и расширительный бак отопления.

На случай сильный морозов котел покупают с запасом мощности не менее 20%.

Потеря тепла происходит из-за:

  • проникновения холодной температуры с наружных стен помещения, через оконные щели,
  • плохой герметизации оконных рам.

Устанавливая отопительные системы, нужно учесть региональную особенность температуры за окном и исходя из полученных параметров, выбирать тот или иной вид нагревательного оборудования. Но даже самая эффективная нагревательная техника не даст желаемого результата, если не избавиться от так называемых «точек утечки тепла». При установке оконных рам следует один раз потратиться на качественные, и обладающие высоким коэффициентом сохранения тепла. Чтобы эффективно провести утеплительные работы стен, рынок теплоизоляционных материалов представляет большой выбор.


Расход тепла на отопление будет в разы уменьшаться, если работы по герметизации помещения проведены качественно. Любое современное отопительное оборудование можно регулировать, контролируя поступление теплых масс воздуха в помещение. Мощность нагревательных приборов возрастает по мере уменьшения поступлений холодного воздуха.

Для полного комфорта необходимо выполнить два условия:

  • обеспечить оптимальную температуру в помещении в 20-22 градуса;
  • разница температуры воздуха внутри помещения и наружной стены должна быть не более 4 градусов, при этом температура стены должна быть выше температуры точки росы.


Точка росы – это охлаждение наружного воздуха до начала конденсации и превращения его паров в росу. Такого легко достигнуть при наличии мощного котла. Но немаловажно при этом уменьшить расходы на отопление.

Расход тепла на отопление имеет два варианта нормы потребления:

  1. Первый – установленная норма на сопротивление теплоподачи наружных стен, оконных рам и т.д.
  2. Второй – определяется норматив расхода энергии на отопление дома. Второй способ позволяет уменьшать сопротивление теплоподаче ограждающих конструкций. Таким образом, можно выбрать оптимальную толщину стен помещения.


Профессиональные строители зачастую используют первый вариант. Воздвигая бетонные стены, им они выполняют работы по дополнительному утеплению различными теплоизоляционными материалами. Такой способ существенно усложняет процесс и повышает стоимость работ.

При построении частных домов не обязательно утеплять наружные стены, достаточно создать более утепленный слой на чердаке и в подполье. Также следует придать дому форму, которая является энергосберегающей, учитывая компактность строения. Для большего утепления к дому пристраивают веранды, лоджии, оконные рамы делают меньше по размерам и т.д. Таким образом, расход тепла на отопление во много раз уменьшается.


Ликвидировав все недостатки, можно приступать к выбору отопительного оборудования. Стоит обратить внимание на параметры отопительной системы, которая будет установлена в помещении. От качества материалов, из которых будут изготовлены теплоносители, радиаторы и котлы отопительного оборудования, зависит и состояние температуры в доме. Современные системы отопления имеют в резерве большой список новых технологически оснащенных приборов для сбережения тепла. Автоматические контроллеры для поддержания оптимальной температуры в комнате будут главными помощниками в плане расхода теплоэнергии на отопление.

При построении энергосберегающего дома или заказа уже готового проекта внимательно стоит рассмотреть вопросы по утеплению здания с привлечением опытных специалистов. Работа требует комплексного подхода и только в таком случае можно построить комфортный, теплый и уютный дом.

Радиаторы отопления и терморегуляторы

В радиаторах температура теплоносителя не должна превышать 90 градусов. При выборе мощных и стойких радиаторов такая температура вполне подходит для холодных зим. Чтобы атмосфера в комнате была приемлемой для всех, нужно установить терморегуляторы. Их существует два вида – механический и автоматический . Механический нужно постоянно регулировать вручную, не упуская момента смены тепловых величин. Открытое положение регулятора обеспечивает максимальный режим, закрытое – минимальный. При потере подачи горячей воды батарея быстро остывает.


Автоматический терморегулятор, в свою очередь, требует меньшего внимания. Достаточно зафиксировать на шкале необходимую отметку, и автомат сам подгоняет температурный уровень. Использование терморегулятора возможно только при параллельном положении труб, использование установленных друг за другом регуляторов блокирует циркуляцию теплоносителя в трубах.

Расход тепловой энергии на отопление несет в себе немалые затраты, если система отопления установлена без учета других затрат, например бойлер, кухня, ванная.

Найти «течь»

Чтобы больше сэкономить, при подведении отопительной системы нужно учесть все «больные» места утечки тепла. Не лишним будет сказать, что окна должны быть герметизированы. Толщина стен позволяет удержать теплоту, теплые полы сохраняют температурный фон на положительной отметке. Расход тепловой энергии на отопление в помещении зависит от высоты потолков, типа вентиляционной системы, строительных материалов при постройке здания.


После вычета всех теплопотерь, нужно серьезно подойти к выбору отопительного котла. Здесь главное – бюджетная часть вопроса. В зависимости от мощности и универсальности варьируется и цена прибора. Если в доме уже проведен газ, то идет экономия на электричестве (стоимость которого немалая), и вместе с приготовлением, например, ужина, заодно и прогревается система.

Еще одним моментом в сохранении тепла является тип обогревателя – конвектор, радиатор, батарея и т.д. Самое подходящее решение вопроса – радиатор , количество секций которого высчитывается при помощи несложной формулы. Одна секция (ребро) радиатора имеет мощность в 150 Вт, для комнаты в 10 метров достаточно 1700 Вт. Путем разделения получаем 13 секций, необходимых для комфортного обогрева помещения.

Установка теплых полов решит наполовину вопрос экономии энергии. По подсчетам специалистов, количество потребленной теплоэнергии сокращается в 2-3 раза. Экономный расход тепловой энергии на отопление налицо.


При установке отопительной системы путем размещения радиаторов можно сразу же подключить систему теплых полов. Постоянная циркуляция теплоносителя создает равномерную температуру во всем помещении.

В продолжение темы:
Сварка

Сверлильный станок необходим не только на производственных предприятиях. В домашней мастерской, ремонтных цехах и гаражных боксах – везде, где есть потребность в высокой...

Новые статьи
/
Популярные